Abstract

For planar temperature measurements in combusting flows, the well-established laser Raman technique has been further developed to provide two-dimensional local resolution. After excitation with a frequency-doubled Nd:YAG laser, the anti-Stokes and the Stokes Raman signals of the vibrational Q branch of molecular N2 were detected at 473.3 and 607.3 nm, respectively. From the ratio of the two images, two-dimensional temperature distributions have been obtained by application of an analytical function, which was determined from theoretically calculated Raman spectra. Time-averaged measurements have been performed in the exhaust region of an atmospheric-pressure laminar CH4/air flat-flame burner for different equivalence ratios. The accuracy and precision of the results are discussed in combination with the prospects for time-resolved single-pulse measurements.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, Th. Sattelmayer, “Two-dimensional temperature measurements in a technical combustor using laser Rayleigh scattering,” Appl. Opt. 32, 6167–6172 (1993).
    [CrossRef] [PubMed]
  2. R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
    [CrossRef]
  3. A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
    [CrossRef]
  4. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993).
    [CrossRef] [PubMed]
  5. J. M. Seitzman, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000–4012 (1994).
    [CrossRef] [PubMed]
  6. G. S. Widhopf, S. Lederman, “Species concentration measurements utilizing Raman scattering of a laser beam,” AIAA J. 9, 309–316 (1971).
    [CrossRef]
  7. M. Lapp, “Flame temperatures from vibrational Raman scattering,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1974), pp. 107–145.
    [CrossRef]
  8. S. Lederman, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
    [CrossRef]
  9. A. C. Eckbreth, “Averaging considerations for pulsed, laser Raman signals from turbulent combustion media,” Combust. Flame 31, 231–237 (1978).
    [CrossRef]
  10. A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
    [CrossRef]
  11. M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978).
    [CrossRef]
  12. A. Leipertz, M. Fiebig, “Giant pulse laser Raman probe for low gas concentration detection,” Opt. Eng. 20, 599–604 (1981).
    [CrossRef]
  13. M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent diffusion flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).
  14. J. Haumann, A. Leipertz, “Giant-pulsed laser Raman oxygen measurements in a premixed laminar methane–air flame,” Appl. Opt. 24, 4509–4515 (1985).
    [CrossRef]
  15. T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurement in a lifted hydrogen diffusion flame by a KrF excimer laser,” AIAA paper 91-0181 (American Institute of Aeronautics and Astronautics, New York, 1991).
  16. J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
    [CrossRef] [PubMed]
  17. S. P. Nandula, T. M. Brown, R. W. Pitz, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
    [PubMed]
  18. E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by use of a narrow-band XeCl excimer,” Appl. Opt. 32, 4058–4065 (1993).
    [CrossRef] [PubMed]
  19. J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Linewise Raman-Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B. 62, 21–27 (1996).
    [CrossRef]
  20. S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
    [CrossRef]
  21. A. Leipertz, M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272–2274 (1980).
    [CrossRef] [PubMed]
  22. A. Leipertz, “Temperaturbestimmung in Gasen mittels linearer und nichtlinearer Raman-Prozesse,” Habilitation thesis (Ruhr-Universität Bochum, Bochum, Germany, 1984), pp. 193–194.
  23. G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
    [CrossRef]
  24. H. W. Schrötter, H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed., Vol. 11 of Springer Series Topics in Current Physics (Springer-Verlag, Berlin, 1979), p. 137.
  25. D. A. Long, Raman Spectroscopy (McGraw-Hill, London, 1977), Chap. 4 , pp. 82–84.
  26. E. P. Hassel, Energie- und Kraftwerkstechnik, TH Darmstadt, 64287 Darmstadt, Germany, (personal communication, 1994).
  27. M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from rotational and vibrational Raman scattering: effects of vibrational-rotational interactions and other corrections,” in Laser Probes for Combustion Chemistry, D. R. Crosley, ed., ACS Symposium Series (American Chemical Society, Washington, 1980), Vol. 134, p. 235.
  28. A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-HöAdoinghaus, “Laser-induced fluorescence determination of flame temperatures in comparison with CARS measurements,” Appl. Phys. B 50, 513–518 (1990).
    [CrossRef]
  29. D. Hofmann, Lehrstuhl für Technische Thermodynamik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany (personal communication, 1996).
  30. I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985).
    [CrossRef]
  31. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, “Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements,” Appl. Opt. 36, 3253–3260 (1997).
    [CrossRef] [PubMed]
  32. M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous two-dimensional mapping of species concentration and temperature in turbulent flames,” Opt. Lett. 10, 267–269 (1985).
    [CrossRef] [PubMed]

1997 (1)

1996 (1)

J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Linewise Raman-Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B. 62, 21–27 (1996).
[CrossRef]

1995 (1)

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
[CrossRef]

1994 (4)

S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

S. P. Nandula, T. M. Brown, R. W. Pitz, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
[PubMed]

J. M. Seitzman, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000–4012 (1994).
[CrossRef] [PubMed]

1993 (3)

1992 (1)

1990 (1)

A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-HöAdoinghaus, “Laser-induced fluorescence determination of flame temperatures in comparison with CARS measurements,” Appl. Phys. B 50, 513–518 (1990).
[CrossRef]

1987 (1)

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

1985 (3)

1981 (1)

A. Leipertz, M. Fiebig, “Giant pulse laser Raman probe for low gas concentration detection,” Opt. Eng. 20, 599–604 (1981).
[CrossRef]

1980 (1)

1979 (1)

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

1978 (2)

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978).
[CrossRef]

A. C. Eckbreth, “Averaging considerations for pulsed, laser Raman signals from turbulent combustion media,” Combust. Flame 31, 231–237 (1978).
[CrossRef]

1977 (1)

S. Lederman, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

1971 (1)

G. S. Widhopf, S. Lederman, “Species concentration measurements utilizing Raman scattering of a laser beam,” AIAA J. 9, 309–316 (1971).
[CrossRef]

Andresen, P.

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
[CrossRef]

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

Asawaroengchai, C.

M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from rotational and vibrational Raman scattering: effects of vibrational-rotational interactions and other corrections,” in Laser Probes for Combustion Chemistry, D. R. Crosley, ed., ACS Symposium Series (American Chemical Society, Washington, 1980), Vol. 134, p. 235.

Beushausen, V.

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

Bilger, R. W.

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Bittner, J.

A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-HöAdoinghaus, “Laser-induced fluorescence determination of flame temperatures in comparison with CARS measurements,” Appl. Phys. B 50, 513–518 (1990).
[CrossRef]

Bonczyk, P. A.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Brockhinke, A.

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
[CrossRef]

Brown, T. M.

Cheng, T. S.

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurement in a lifted hydrogen diffusion flame by a KrF excimer laser,” AIAA paper 91-0181 (American Institute of Aeronautics and Astronautics, New York, 1991).

Cheng, T.-S.

DeBarber, P. A.

Dibble, R. W.

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Döbbeling, K.

Drake, M. C.

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978).
[CrossRef]

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent diffusion flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from rotational and vibrational Raman scattering: effects of vibrational-rotational interactions and other corrections,” in Laser Probes for Combustion Chemistry, D. R. Crosley, ed., ACS Symposium Series (American Chemical Society, Washington, 1980), Vol. 134, p. 235.

Eckbreth, A. C.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

A. C. Eckbreth, “Averaging considerations for pulsed, laser Raman signals from turbulent combustion media,” Combust. Flame 31, 231–237 (1978).
[CrossRef]

Fiebig, M.

Fourguette, D. C.

Gerhold, B. W.

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent diffusion flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

Grünefeld, G.

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

Hanson, R. K.

Hassel, E. P.

E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by use of a narrow-band XeCl excimer,” Appl. Opt. 32, 4058–4065 (1993).
[CrossRef] [PubMed]

E. P. Hassel, Energie- und Kraftwerkstechnik, TH Darmstadt, 64287 Darmstadt, Germany, (personal communication, 1994).

Haumann, J.

Hentschel, W.

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

Hess, C. F.

Hofmann, D.

D. Hofmann, Lehrstuhl für Technische Thermodynamik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany (personal communication, 1996).

Jonuscheit, J.

Kampmann, S.

Klöckner, H. W.

H. W. Schrötter, H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed., Vol. 11 of Springer Series Topics in Current Physics (Springer-Verlag, Berlin, 1979), p. 137.

Kohse-HöAdoinghaus, K.

A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-HöAdoinghaus, “Laser-induced fluorescence determination of flame temperatures in comparison with CARS measurements,” Appl. Phys. B 50, 513–518 (1990).
[CrossRef]

Kohse-Höinghaus, K.

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
[CrossRef]

Lapp, M.

M. Lapp, “Flame temperatures from vibrational Raman scattering,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1974), pp. 107–145.
[CrossRef]

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent diffusion flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

Lawitzki, A.

A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-HöAdoinghaus, “Laser-induced fluorescence determination of flame temperatures in comparison with CARS measurements,” Appl. Phys. B 50, 513–518 (1990).
[CrossRef]

Lederman, S.

S. Lederman, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

G. S. Widhopf, S. Lederman, “Species concentration measurements utilizing Raman scattering of a laser beam,” AIAA J. 9, 309–316 (1971).
[CrossRef]

Lee, M. P.

Leipertz, A.

Levin, P. S.

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, London, 1977), Chap. 4 , pp. 82–84.

Long, M. B.

Masri, A. R.

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

McMillin, B. K.

Meier, U.

A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-HöAdoinghaus, “Laser-induced fluorescence determination of flame temperatures in comparison with CARS measurements,” Appl. Phys. B 50, 513–518 (1990).
[CrossRef]

Meier, W.

S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

Namer, I.

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985).
[CrossRef]

Nandula, S. P.

Penney, C. M.

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent diffusion flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

Pitz, R. W.

S. P. Nandula, T. M. Brown, R. W. Pitz, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
[PubMed]

J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[CrossRef] [PubMed]

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurement in a lifted hydrogen diffusion flame by a KrF excimer laser,” AIAA paper 91-0181 (American Institute of Aeronautics and Astronautics, New York, 1991).

Plath, I.

A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-HöAdoinghaus, “Laser-induced fluorescence determination of flame temperatures in comparison with CARS measurements,” Appl. Phys. B 50, 513–518 (1990).
[CrossRef]

Prucker, S.

S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

Rosenblatt, G. M.

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978).
[CrossRef]

M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from rotational and vibrational Raman scattering: effects of vibrational-rotational interactions and other corrections,” in Laser Probes for Combustion Chemistry, D. R. Crosley, ed., ACS Symposium Series (American Chemical Society, Washington, 1980), Vol. 134, p. 235.

Sattelmayer, Th.

Schefer, R. W.

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985).
[CrossRef]

Schenk, M.

Schrötter, H. W.

H. W. Schrötter, H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed., Vol. 11 of Springer Series Topics in Current Physics (Springer-Verlag, Berlin, 1979), p. 137.

Seeger, T.

Seitzman, J. M.

Stricker, W.

S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-HöAdoinghaus, “Laser-induced fluorescence determination of flame temperatures in comparison with CARS measurements,” Appl. Phys. B 50, 513–518 (1990).
[CrossRef]

Tecu, K. S.

J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Linewise Raman-Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B. 62, 21–27 (1996).
[CrossRef]

Thumann, A.

Verdieck, J. F.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Warshaw, S.

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent diffusion flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

Wehrmeyer, J. A.

J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Linewise Raman-Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B. 62, 21–27 (1996).
[CrossRef]

J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[CrossRef] [PubMed]

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurement in a lifted hydrogen diffusion flame by a KrF excimer laser,” AIAA paper 91-0181 (American Institute of Aeronautics and Astronautics, New York, 1991).

Widhopf, G. S.

G. S. Widhopf, S. Lederman, “Species concentration measurements utilizing Raman scattering of a laser beam,” AIAA J. 9, 309–316 (1971).
[CrossRef]

Yeralan, S.

J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Linewise Raman-Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B. 62, 21–27 (1996).
[CrossRef]

AIAA J. (1)

G. S. Widhopf, S. Lederman, “Species concentration measurements utilizing Raman scattering of a laser beam,” AIAA J. 9, 309–316 (1971).
[CrossRef]

Appl. Opt. (8)

J. Haumann, A. Leipertz, “Giant-pulsed laser Raman oxygen measurements in a premixed laminar methane–air flame,” Appl. Opt. 24, 4509–4515 (1985).
[CrossRef]

J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[CrossRef] [PubMed]

E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by use of a narrow-band XeCl excimer,” Appl. Opt. 32, 4058–4065 (1993).
[CrossRef] [PubMed]

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993).
[CrossRef] [PubMed]

J. M. Seitzman, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000–4012 (1994).
[CrossRef] [PubMed]

J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, “Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements,” Appl. Opt. 36, 3253–3260 (1997).
[CrossRef] [PubMed]

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, Th. Sattelmayer, “Two-dimensional temperature measurements in a technical combustor using laser Rayleigh scattering,” Appl. Opt. 32, 6167–6172 (1993).
[CrossRef] [PubMed]

A. Leipertz, M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272–2274 (1980).
[CrossRef] [PubMed]

Appl. Phys. B (3)

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
[CrossRef]

A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-HöAdoinghaus, “Laser-induced fluorescence determination of flame temperatures in comparison with CARS measurements,” Appl. Phys. B 50, 513–518 (1990).
[CrossRef]

Appl. Phys. B. (1)

J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Linewise Raman-Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B. 62, 21–27 (1996).
[CrossRef]

Combust. Flame (3)

A. C. Eckbreth, “Averaging considerations for pulsed, laser Raman signals from turbulent combustion media,” Combust. Flame 31, 231–237 (1978).
[CrossRef]

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Exp. Fluids (1)

I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985).
[CrossRef]

Opt. Eng. (1)

A. Leipertz, M. Fiebig, “Giant pulse laser Raman probe for low gas concentration detection,” Opt. Eng. 20, 599–604 (1981).
[CrossRef]

Opt. Lett. (2)

Prog. Energy Combust. Sci. (2)

S. Lederman, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

Other (9)

M. Lapp, “Flame temperatures from vibrational Raman scattering,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1974), pp. 107–145.
[CrossRef]

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent diffusion flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

D. Hofmann, Lehrstuhl für Technische Thermodynamik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany (personal communication, 1996).

T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurement in a lifted hydrogen diffusion flame by a KrF excimer laser,” AIAA paper 91-0181 (American Institute of Aeronautics and Astronautics, New York, 1991).

A. Leipertz, “Temperaturbestimmung in Gasen mittels linearer und nichtlinearer Raman-Prozesse,” Habilitation thesis (Ruhr-Universität Bochum, Bochum, Germany, 1984), pp. 193–194.

H. W. Schrötter, H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed., Vol. 11 of Springer Series Topics in Current Physics (Springer-Verlag, Berlin, 1979), p. 137.

D. A. Long, Raman Spectroscopy (McGraw-Hill, London, 1977), Chap. 4 , pp. 82–84.

E. P. Hassel, Energie- und Kraftwerkstechnik, TH Darmstadt, 64287 Darmstadt, Germany, (personal communication, 1994).

M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from rotational and vibrational Raman scattering: effects of vibrational-rotational interactions and other corrections,” in Laser Probes for Combustion Chemistry, D. R. Crosley, ed., ACS Symposium Series (American Chemical Society, Washington, 1980), Vol. 134, p. 235.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup. ICCD, intensified CCD.

Fig. 2
Fig. 2

Calculated temperature dependence of the N2 anti-Stokes/Stokes intensity ratio fA*/fS * assuming excitation at 532 nm with a 1-cm-1 linewidth and detection at 473.3 nm (anti-Stokes) and 607.3 nm (Stokes) with Gaussian-shaped bandpass filters (1 nm FWHM).

Fig. 3
Fig. 3

Two-dimensional temperature images for different equivalence ratios (100 laser shots accumulated).

Fig. 4
Fig. 4

Measured probability density function for stoichiometric operation indicating the temperature mean value T and standard deviation σT. The data are results of a statistical analysis of the 315 data points within the frame shown in Fig. 3c).

Fig. 5
Fig. 5

Measured two-dimensional Raman results (temperature mean value and standard deviation) for different adjusted equivalence ratios compared with two-dimensional Rayleigh measurements29 and adiabatic flame calculations.

Fig. 6
Fig. 6

Calculated and experimentally determined relative standard deviations of N2 anti-Stokes, Stokes, and temperature distributions as functions of temperature (see text for explanation).

Tables (1)

Tables Icon

Table 1 Comparison of Expected Signal Strengths with an UV versus a Visible Excitation Laser Sourcea

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S/N=ps-pd¯/Σn=pcorr¯/Σn,
nA=N¯AkAσAfA(T)=N¯AkAfA*(T),
RT=nAnS=ε¯AkAσAfATε¯SkSσSfST=kAfA*TkSfS*T
TfA*fS*degrees Kelvin=a+bfA*fS*+cfA*fS*2+dfA*fS*1/2+e lnfA*fS*,
Σn=Σc+Σs=Σc+pcorr¯1/2,

Metrics