Abstract

We have further developed and improved the prototype oceanic Fraunhofer line discriminator by using a well-protected fiber-optic–wire cable and in-water electronic housing. We conducted a series of in situ measurements in clear ocean water in the Florida Straits. By comparing the reduced data with the Monte Carlo simulation results, we verify the Raman scattering coefficient Br with an excitation wavelength at 488 nm to be 2.6 × 10-4m-1 [Appl. Opt. 29, 71–84 (1990)], as opposed to 14.4 × 10-4 m-1 [Appl. Opt. 14, 2116–2120 (1975)]. The wavelength dependence of the Raman scattering coefficient is found to have an insignificant effect on the in-water light field. We also discuss factors that lead to errors. This study can be used as a basis for inelastic light scattering in the radiative transfer theory and will allow other inelastic light, e.g., fluorescence, to be detected with in situ measurements.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Anderson, The Raman Effect: Principles, (Dekker, New York, 1971), Vol. 1.
  2. R. B. Slusher, V. E. Derr, “Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice Ih,” Appl. Opt. 14, 2116–2120 (1975).
    [CrossRef] [PubMed]
  3. B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
    [CrossRef] [PubMed]
  4. I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of Raman scattering of the v1 vibration of the water molecule in the liquid and gaseous state,” Opt. Spectrosc. (USSR) 43, 384–386 (1977).
  5. N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).
  6. S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
    [CrossRef]
  7. F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
    [CrossRef] [PubMed]
  8. R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4001–4011 (1988).
    [CrossRef]
  9. R. H. Stavn, “Raman scattering effects at the shorter visible wavelengths in clear ocean water,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 94–100 (1990).
    [CrossRef]
  10. G. W. Kattawar, X. Xu, “Filling in of Fraunhofer lines in the ocean by Raman scattering,” Appl. Opt. 31, 6491–6500 (1992).
    [CrossRef] [PubMed]
  11. Y. Ge, H. R. Gordon, K. J. Voss, “Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
    [CrossRef] [PubMed]
  12. V. I. Haltrin, G. W. Kattawar, “Self-consistant solutions to the equation of transfer with elastic and inelastic scattering in oceanic optics: I. Model,” Appl. Opt. 32, 5356–5367 (1993).
    [CrossRef] [PubMed]
  13. J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
    [CrossRef]
  14. J. Noxon, R. Goody, “Noncoherent scattering of skylight,” Izv. Atmos. Ocean. Phys. 1, 163–166 (1965).
  15. F. E. Barmore, “The filling-in of Fraunhofer lines in the day sky,” J. Atmos. Sci. 32, 1489–1493 (1975).
    [CrossRef]
  16. M. Conde, P. Greet, F. Jacka, “The ring effect in the sodium D2 Fraunhofer line of day skylight,” J. Geophys. Res. 97, 11561–11565 (1992).
    [CrossRef]
  17. G. E. Stoertz, W. R. Hemphill, “Airborne fluorometer applicable to marine and estuarine studies,” Mar. Technol. Soc. J. 3, 11–26 (1969).
  18. J. A. Plascyk, “The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence,” Opt. Eng. 14, 339–346 (1975).
    [CrossRef]
  19. M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, “Oceanic in situ Fraunhofer line characterizations,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 149–160 (1992).
    [CrossRef]
  20. Y. Ge, K. J. Voss, H. R. Gordon, “Measurement of oceanic inelastic scattering using solar Fraunhofer line,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 161–169 (1992).
    [CrossRef]
  21. C. Hu, K. J. Voss, “Solar-stimulated inelastic light in clear sea water,” in Ocean Optics XIIIS. G. Ackleson, ed., Proc. SPIE2963, 266–271 (1997).
    [CrossRef]
  22. J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers. Volume II: graphical form,” , Environmental Research Paper 565, (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).
  23. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” , Environmental Research Paper 285, (Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).
  24. R. G. Zika, C. A. Moore, C. Farmer, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Fla. 33149 (personal communication, 1996).
  25. H. R. Gordon, “Radiative transfer in the atmosphere for correction of ocean color remote sensors,” in Ocean Colour: Theory and Applications in a Decade of CZCS Experience, V. Barale, P. M. Schlittenhardt, eds. (ECSC, EEC, EAEC, Brussels, 1993), pp. 33–77.

1993 (2)

1992 (2)

G. W. Kattawar, X. Xu, “Filling in of Fraunhofer lines in the ocean by Raman scattering,” Appl. Opt. 31, 6491–6500 (1992).
[CrossRef] [PubMed]

M. Conde, P. Greet, F. Jacka, “The ring effect in the sodium D2 Fraunhofer line of day skylight,” J. Geophys. Res. 97, 11561–11565 (1992).
[CrossRef]

1990 (1)

1988 (1)

R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4001–4011 (1988).
[CrossRef]

1984 (1)

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

1981 (1)

1977 (1)

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of Raman scattering of the v1 vibration of the water molecule in the liquid and gaseous state,” Opt. Spectrosc. (USSR) 43, 384–386 (1977).

1975 (4)

N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).

F. E. Barmore, “The filling-in of Fraunhofer lines in the day sky,” J. Atmos. Sci. 32, 1489–1493 (1975).
[CrossRef]

J. A. Plascyk, “The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence,” Opt. Eng. 14, 339–346 (1975).
[CrossRef]

R. B. Slusher, V. E. Derr, “Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice Ih,” Appl. Opt. 14, 2116–2120 (1975).
[CrossRef] [PubMed]

1969 (1)

G. E. Stoertz, W. R. Hemphill, “Airborne fluorometer applicable to marine and estuarine studies,” Mar. Technol. Soc. J. 3, 11–26 (1969).

1965 (1)

J. Noxon, R. Goody, “Noncoherent scattering of skylight,” Izv. Atmos. Ocean. Phys. 1, 163–166 (1965).

1962 (1)

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Anderson, A.

A. Anderson, The Raman Effect: Principles, (Dekker, New York, 1971), Vol. 1.

Barmore, F. E.

F. E. Barmore, “The filling-in of Fraunhofer lines in the day sky,” J. Atmos. Sci. 32, 1489–1493 (1975).
[CrossRef]

Beckers, J. M.

J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers. Volume II: graphical form,” , Environmental Research Paper 565, (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

Bridges, C. A.

J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers. Volume II: graphical form,” , Environmental Research Paper 565, (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

Conde, M.

M. Conde, P. Greet, F. Jacka, “The ring effect in the sodium D2 Fraunhofer line of day skylight,” J. Geophys. Res. 97, 11561–11565 (1992).
[CrossRef]

Demyanenko, O. P.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of Raman scattering of the v1 vibration of the water molecule in the liquid and gaseous state,” Opt. Spectrosc. (USSR) 43, 384–386 (1977).

Derr, V. E.

Elterman, L.

L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” , Environmental Research Paper 285, (Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).

Farmer, C.

R. G. Zika, C. A. Moore, C. Farmer, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Fla. 33149 (personal communication, 1996).

Ge, Y.

Y. Ge, H. R. Gordon, K. J. Voss, “Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
[CrossRef] [PubMed]

Y. Ge, K. J. Voss, H. R. Gordon, “Measurement of oceanic inelastic scattering using solar Fraunhofer line,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 161–169 (1992).
[CrossRef]

Gilliam, L. B.

J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers. Volume II: graphical form,” , Environmental Research Paper 565, (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

Goody, R.

J. Noxon, R. Goody, “Noncoherent scattering of skylight,” Izv. Atmos. Ocean. Phys. 1, 163–166 (1965).

Gordon, H. R.

Y. Ge, H. R. Gordon, K. J. Voss, “Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
[CrossRef] [PubMed]

Y. Ge, K. J. Voss, H. R. Gordon, “Measurement of oceanic inelastic scattering using solar Fraunhofer line,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 161–169 (1992).
[CrossRef]

H. R. Gordon, “Radiative transfer in the atmosphere for correction of ocean color remote sensors,” in Ocean Colour: Theory and Applications in a Decade of CZCS Experience, V. Barale, P. M. Schlittenhardt, eds. (ECSC, EEC, EAEC, Brussels, 1993), pp. 33–77.

Grainger, J. F.

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Greet, P.

M. Conde, P. Greet, F. Jacka, “The ring effect in the sodium D2 Fraunhofer line of day skylight,” J. Geophys. Res. 97, 11561–11565 (1992).
[CrossRef]

Haltrin, V. I.

Hemphill, W. R.

G. E. Stoertz, W. R. Hemphill, “Airborne fluorometer applicable to marine and estuarine studies,” Mar. Technol. Soc. J. 3, 11–26 (1969).

Hoge, F. E.

Hu, C.

C. Hu, K. J. Voss, “Solar-stimulated inelastic light in clear sea water,” in Ocean Optics XIIIS. G. Ackleson, ed., Proc. SPIE2963, 266–271 (1997).
[CrossRef]

Jacka, F.

M. Conde, P. Greet, F. Jacka, “The ring effect in the sodium D2 Fraunhofer line of day skylight,” J. Geophys. Res. 97, 11561–11565 (1992).
[CrossRef]

Kattawar, G. W.

Kaye, G. T.

M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, “Oceanic in situ Fraunhofer line characterizations,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 149–160 (1992).
[CrossRef]

Kishino, M.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Klimenko, V. A.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of Raman scattering of the v1 vibration of the water molecule in the liquid and gaseous state,” Opt. Spectrosc. (USSR) 43, 384–386 (1977).

Kondilenko, I. I.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of Raman scattering of the v1 vibration of the water molecule in the liquid and gaseous state,” Opt. Spectrosc. (USSR) 43, 384–386 (1977).

Korotkov, P. A.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of Raman scattering of the v1 vibration of the water molecule in the liquid and gaseous state,” Opt. Spectrosc. (USSR) 43, 384–386 (1977).

Lovern, M. G.

M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, “Oceanic in situ Fraunhofer line characterizations,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 149–160 (1992).
[CrossRef]

Marshall, B. R.

Miller, S. A.

M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, “Oceanic in situ Fraunhofer line characterizations,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 149–160 (1992).
[CrossRef]

Moore, C. A.

R. G. Zika, C. A. Moore, C. Farmer, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Fla. 33149 (personal communication, 1996).

Noxon, J.

J. Noxon, R. Goody, “Noncoherent scattering of skylight,” Izv. Atmos. Ocean. Phys. 1, 163–166 (1965).

Okami, N.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Plascyk, J. A.

J. A. Plascyk, “The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence,” Opt. Eng. 14, 339–346 (1975).
[CrossRef]

Ring, J.

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Roberts, M. W.

M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, “Oceanic in situ Fraunhofer line characterizations,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 149–160 (1992).
[CrossRef]

Romanov, N. P.

N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).

Shuklin, V. S.

N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).

Slusher, R. B.

Smith, R. C.

Stavn, R. H.

R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4001–4011 (1988).
[CrossRef]

R. H. Stavn, “Raman scattering effects at the shorter visible wavelengths in clear ocean water,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 94–100 (1990).
[CrossRef]

Stoertz, G. E.

G. E. Stoertz, W. R. Hemphill, “Airborne fluorometer applicable to marine and estuarine studies,” Mar. Technol. Soc. J. 3, 11–26 (1969).

Sugihara, S.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Swift, R. N.

Voss, K. J.

Y. Ge, H. R. Gordon, K. J. Voss, “Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
[CrossRef] [PubMed]

Y. Ge, K. J. Voss, H. R. Gordon, “Measurement of oceanic inelastic scattering using solar Fraunhofer line,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 161–169 (1992).
[CrossRef]

C. Hu, K. J. Voss, “Solar-stimulated inelastic light in clear sea water,” in Ocean Optics XIIIS. G. Ackleson, ed., Proc. SPIE2963, 266–271 (1997).
[CrossRef]

Weidemann, A. D.

R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4001–4011 (1988).
[CrossRef]

Xu, X.

Zika, R. G.

R. G. Zika, C. A. Moore, C. Farmer, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Fla. 33149 (personal communication, 1996).

Appl. Opt. (7)

Izv. Atmos. Ocean. Phys. (1)

J. Noxon, R. Goody, “Noncoherent scattering of skylight,” Izv. Atmos. Ocean. Phys. 1, 163–166 (1965).

J. Atmos. Sci. (1)

F. E. Barmore, “The filling-in of Fraunhofer lines in the day sky,” J. Atmos. Sci. 32, 1489–1493 (1975).
[CrossRef]

J. Geophys. Res. (1)

M. Conde, P. Greet, F. Jacka, “The ring effect in the sodium D2 Fraunhofer line of day skylight,” J. Geophys. Res. 97, 11561–11565 (1992).
[CrossRef]

J. Oceanogr. Soc. Jpn. (1)

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Mar. Technol. Soc. J. (1)

G. E. Stoertz, W. R. Hemphill, “Airborne fluorometer applicable to marine and estuarine studies,” Mar. Technol. Soc. J. 3, 11–26 (1969).

Nature (London) (1)

J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Opt. Eng. (1)

J. A. Plascyk, “The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence,” Opt. Eng. 14, 339–346 (1975).
[CrossRef]

Opt. Spectrosc. (USSR) (2)

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of Raman scattering of the v1 vibration of the water molecule in the liquid and gaseous state,” Opt. Spectrosc. (USSR) 43, 384–386 (1977).

N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).

Other (9)

A. Anderson, The Raman Effect: Principles, (Dekker, New York, 1971), Vol. 1.

M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, “Oceanic in situ Fraunhofer line characterizations,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 149–160 (1992).
[CrossRef]

Y. Ge, K. J. Voss, H. R. Gordon, “Measurement of oceanic inelastic scattering using solar Fraunhofer line,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 161–169 (1992).
[CrossRef]

C. Hu, K. J. Voss, “Solar-stimulated inelastic light in clear sea water,” in Ocean Optics XIIIS. G. Ackleson, ed., Proc. SPIE2963, 266–271 (1997).
[CrossRef]

J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers. Volume II: graphical form,” , Environmental Research Paper 565, (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” , Environmental Research Paper 285, (Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).

R. G. Zika, C. A. Moore, C. Farmer, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Fla. 33149 (personal communication, 1996).

H. R. Gordon, “Radiative transfer in the atmosphere for correction of ocean color remote sensors,” in Ocean Colour: Theory and Applications in a Decade of CZCS Experience, V. Barale, P. M. Schlittenhardt, eds. (ECSC, EEC, EAEC, Brussels, 1993), pp. 33–77.

R. H. Stavn, “Raman scattering effects at the shorter visible wavelengths in clear ocean water,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 94–100 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Raw data and fitted spectrum using the fitting procedure. (a) I, surface reference spectrum y0(λ) as the template; curve II, depth spectrum yz(λ), which is noisy and data pixel shifted. (b) A fitted, clean, and shift-corrected spectrum II [yzfit(λ)] obtained by use of I [ y0(λ)] as the template to least-squares fit the noisy spectrum.

Fig. 2
Fig. 2

From the Monte Carlo simulation normalized equivalent width [w(z)/w0] is obtained as a function of depth and wavelength. The ratio of inelastic light over total light (Ein/Et) is 1 - w(z)/w0. (a) Downwelling data; (b) upwelling data. In the simulation the sky is clear and the optical thickness of aerosol at 550 nm is 0.25. The solar zenith angle is 25°, and the wind speed is 5 m/s. Pigment concentration is 0.1 mg/m3 throughout the water column.

Fig. 3
Fig. 3

Station locations in the Florida Straits.

Fig. 4
Fig. 4

Normalized equivalent width [w(z)/w0] for the Fraunhofer line at 589 nm for both downwelling and upwelling. The simulation uses the pigment concentration, wind speed, and solar zenith angle data from the 7 December 1995 station. Only Raman scattering is considered in the model with the excitation at 491 nm. Three different Raman scattering coefficients Br are used in the model.

Fig. 5
Fig. 5

Normalized equivalent width [w(z)/w0] for the Fraunhofer line at 656 nm for both downwelling and upwelling. The simulation uses the pigment concentration, wind speed, and solar zenith angle data from the 7 December 1995 station; the λem-5 dependence of the Raman scattering coefficient in the model is assumed to be λem-4, λem-5 and λem-6, respectively.

Tables (1)

Tables Icon

Table 1 Depths of the OFLD Detector can Reacha

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w=λ1λ21-EλEbλdλ,
EinzEtS=1-wzw0,
Eel/Et=wzw0,
fλ=Ay0λ+Bλ+C,
Qn=λfλ-yz,nλ2,

Metrics