Abstract

Scanned, single-channel optical heterodyne detection has been used in a variety of lidar applications from ranging and velocity measurements to differential absorption spectroscopy. We describe the design of a coherent camera system that is based on a two-dimensional staring array of heterodyne receivers for coherent imaging applications. Experimental results with a single HgCdTe detector translated in the image plane to form a synthetic two-dimensional array demonstrate the ability to obtain passive heterodyne images of chemical vapor plumes that are invisible to normal video infrared cameras. We describe active heterodyne imaging experiments with use of focal-plane arrays that yield hard-body Doppler lidar images and also demonstrate spatial averaging to reduce speckle effects in static coherent images.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Teich, “Infrared heterodyne detection,” Proc. IEEE 56, 37–46 (1968).
    [CrossRef]
  2. C. B. Carlisle, J. E. van der Lann, L. W. Carr, P. Adam, J. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
    [CrossRef] [PubMed]
  3. R. Targ, J. G. Hawley, B. C. Steakley, L. L. Ames, “Airborne lidar wind detection at 2 µm,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 178–181.
  4. K. I. Schultz, S. Fisher, “Ground-based laser radar measurements of satellite vibrations,” Appl. Opt. 31, 7690–7695 (1992).
    [CrossRef] [PubMed]
  5. J. Y. Wang, B. J. Bartholomew, M. L. Streiff, E. F. Starr, “Imaging CO2 laser radar field tests,” Appl. Opt. 23, 2565–2571 (1984).
    [CrossRef]
  6. A. Rogalski, “New trends in infrared detector technology,” Infrared Phys. Technol. 35, 1–21 (1994).
    [CrossRef]
  7. H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, “Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors,” IEEE Electron. Device Lett. 16, 253–255 (1995).
    [CrossRef]
  8. B. Willen, U. Westergren, H. Asonen, “High-gain high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron. Device Lett. 16, 479–481 (1995).
    [CrossRef]
  9. M.-C. Ho, R. A. Johnson, W. J. Ho, M. F. Chang, P. M. Asbeck, “High-performance low-base-collector capacitance AlGaAs/GaAs heterojunction bipolar transistors fabricated by deep ion implantation,” IEEE Electron. Device Lett. 16, 512–514 (1995).
    [CrossRef]
  10. W. B. Veldkamp, “Holographic local oscillator beam multiplexing for array heterodyne detection,” Appl. Opt. 22, 891–900 (1983).
    [CrossRef]
  11. W. B. Veldkamp, E. J. Van Allen, “Binary holographic LO beam multiplexer for IR imaging detector arrays,” Appl. Opt. 22, 1497–1506 (1983).
    [CrossRef] [PubMed]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).
  13. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966).
    [CrossRef] [PubMed]
  14. E. Holzhauser, J. H. Massig, “An analysis of optical mixing in plasma scattering experiments,” Plasma Phys. 20, 867–877 (1978).
    [CrossRef]
  15. B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979).
    [CrossRef] [PubMed]
  16. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1566 (1966).
    [CrossRef] [PubMed]
  17. A. T. Forrestor, “On coherence properties of light waves,” Am. J. Phys. 24, 192–196 (1956).
    [CrossRef]
  18. W. Martienssen, E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
    [CrossRef]
  19. A. B. Haner, N. R. Isenor, “Intensity correlations from pseudothermal light sources,” Am. J. Phys. 38, 748–750 (1970).
    [CrossRef]
  20. F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 8, 785–795 (1938).
    [CrossRef]
  21. J. F. Kusters, B. J. Rye, A. C. Walker, “Spatial weighting in laboratory light scattering experiments,” Appl. Opt. 28, 657–664 (1989).
    [CrossRef] [PubMed]
  22. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975), Chap. 2, pp. 9–75.
  23. C. A. Bennett, R. K. Richards, D. P. Hutchinson, “Absolute broadband calibration procedure for infrared heterodyne receivers,” Appl. Opt. 27, 3324–3325 (1988).
    [CrossRef] [PubMed]
  24. K. P. Chan, D. Killinger, “Enhanced detection of atmospheric-turbulence-distorted 1-µm coherent lidar returns using a two-dimensional heterodyne detector array,” Opt. Lett. 16, 1219–1221 (1991).
    [CrossRef] [PubMed]
  25. R. Dädandliker, M. Geiser, C. Giunti, S. Zatti, G. Margheri, “Improvement of speckle statistics in double-wavelength superheterodyne interferometry,” Appl. Opt. 34, 7197–7201 (1995).
    [CrossRef]

1995 (5)

H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, “Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors,” IEEE Electron. Device Lett. 16, 253–255 (1995).
[CrossRef]

B. Willen, U. Westergren, H. Asonen, “High-gain high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron. Device Lett. 16, 479–481 (1995).
[CrossRef]

M.-C. Ho, R. A. Johnson, W. J. Ho, M. F. Chang, P. M. Asbeck, “High-performance low-base-collector capacitance AlGaAs/GaAs heterojunction bipolar transistors fabricated by deep ion implantation,” IEEE Electron. Device Lett. 16, 512–514 (1995).
[CrossRef]

C. B. Carlisle, J. E. van der Lann, L. W. Carr, P. Adam, J. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
[CrossRef] [PubMed]

R. Dädandliker, M. Geiser, C. Giunti, S. Zatti, G. Margheri, “Improvement of speckle statistics in double-wavelength superheterodyne interferometry,” Appl. Opt. 34, 7197–7201 (1995).
[CrossRef]

1994 (1)

A. Rogalski, “New trends in infrared detector technology,” Infrared Phys. Technol. 35, 1–21 (1994).
[CrossRef]

1992 (1)

1991 (1)

1989 (1)

1988 (1)

1984 (1)

1983 (2)

1979 (1)

1978 (1)

E. Holzhauser, J. H. Massig, “An analysis of optical mixing in plasma scattering experiments,” Plasma Phys. 20, 867–877 (1978).
[CrossRef]

1970 (1)

A. B. Haner, N. R. Isenor, “Intensity correlations from pseudothermal light sources,” Am. J. Phys. 38, 748–750 (1970).
[CrossRef]

1968 (1)

M. C. Teich, “Infrared heterodyne detection,” Proc. IEEE 56, 37–46 (1968).
[CrossRef]

1966 (2)

1964 (1)

W. Martienssen, E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[CrossRef]

1956 (1)

A. T. Forrestor, “On coherence properties of light waves,” Am. J. Phys. 24, 192–196 (1956).
[CrossRef]

1938 (1)

F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 8, 785–795 (1938).
[CrossRef]

Adam, P.

Ames, L. L.

R. Targ, J. G. Hawley, B. C. Steakley, L. L. Ames, “Airborne lidar wind detection at 2 µm,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 178–181.

Asbeck, P. M.

M.-C. Ho, R. A. Johnson, W. J. Ho, M. F. Chang, P. M. Asbeck, “High-performance low-base-collector capacitance AlGaAs/GaAs heterojunction bipolar transistors fabricated by deep ion implantation,” IEEE Electron. Device Lett. 16, 512–514 (1995).
[CrossRef]

Asonen, H.

B. Willen, U. Westergren, H. Asonen, “High-gain high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron. Device Lett. 16, 479–481 (1995).
[CrossRef]

Bartholomew, B. J.

Bennett, C. A.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).

Brown, E. R.

H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, “Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors,” IEEE Electron. Device Lett. 16, 253–255 (1995).
[CrossRef]

Carlisle, C. B.

Carr, L. W.

Chan, K. P.

Chang, M. F.

M.-C. Ho, R. A. Johnson, W. J. Ho, M. F. Chang, P. M. Asbeck, “High-performance low-base-collector capacitance AlGaAs/GaAs heterojunction bipolar transistors fabricated by deep ion implantation,” IEEE Electron. Device Lett. 16, 512–514 (1995).
[CrossRef]

Chiaroni, J.

Dädandliker, R.

Fisher, S.

Forrestor, A. T.

A. T. Forrestor, “On coherence properties of light waves,” Am. J. Phys. 24, 192–196 (1956).
[CrossRef]

Geiser, M.

Giunti, C.

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975), Chap. 2, pp. 9–75.

Haner, A. B.

A. B. Haner, N. R. Isenor, “Intensity correlations from pseudothermal light sources,” Am. J. Phys. 38, 748–750 (1970).
[CrossRef]

Hawley, J. G.

R. Targ, J. G. Hawley, B. C. Steakley, L. L. Ames, “Airborne lidar wind detection at 2 µm,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 178–181.

Ho, M.-C.

M.-C. Ho, R. A. Johnson, W. J. Ho, M. F. Chang, P. M. Asbeck, “High-performance low-base-collector capacitance AlGaAs/GaAs heterojunction bipolar transistors fabricated by deep ion implantation,” IEEE Electron. Device Lett. 16, 512–514 (1995).
[CrossRef]

Ho, W. J.

M.-C. Ho, R. A. Johnson, W. J. Ho, M. F. Chang, P. M. Asbeck, “High-performance low-base-collector capacitance AlGaAs/GaAs heterojunction bipolar transistors fabricated by deep ion implantation,” IEEE Electron. Device Lett. 16, 512–514 (1995).
[CrossRef]

Holzhauser, E.

E. Holzhauser, J. H. Massig, “An analysis of optical mixing in plasma scattering experiments,” Plasma Phys. 20, 867–877 (1978).
[CrossRef]

Hutchinson, D. P.

Isenor, N. R.

A. B. Haner, N. R. Isenor, “Intensity correlations from pseudothermal light sources,” Am. J. Phys. 38, 748–750 (1970).
[CrossRef]

Jenkins, G. E.

H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, “Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors,” IEEE Electron. Device Lett. 16, 253–255 (1995).
[CrossRef]

Johnson, R. A.

M.-C. Ho, R. A. Johnson, W. J. Ho, M. F. Chang, P. M. Asbeck, “High-performance low-base-collector capacitance AlGaAs/GaAs heterojunction bipolar transistors fabricated by deep ion implantation,” IEEE Electron. Device Lett. 16, 512–514 (1995).
[CrossRef]

Killinger, D.

Kogelnik, H.

Kusters, J. F.

Li, T.

Liu, H. C.

H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, “Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors,” IEEE Electron. Device Lett. 16, 253–255 (1995).
[CrossRef]

Manfra, M. J.

H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, “Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors,” IEEE Electron. Device Lett. 16, 253–255 (1995).
[CrossRef]

Margheri, G.

Martienssen, W.

W. Martienssen, E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[CrossRef]

Massig, J. H.

E. Holzhauser, J. H. Massig, “An analysis of optical mixing in plasma scattering experiments,” Plasma Phys. 20, 867–877 (1978).
[CrossRef]

McIntosh, K. A.

H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, “Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors,” IEEE Electron. Device Lett. 16, 253–255 (1995).
[CrossRef]

Nichols, K. B.

H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, “Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors,” IEEE Electron. Device Lett. 16, 253–255 (1995).
[CrossRef]

Richards, R. K.

Rogalski, A.

A. Rogalski, “New trends in infrared detector technology,” Infrared Phys. Technol. 35, 1–21 (1994).
[CrossRef]

Rye, B. J.

Schultz, K. I.

Siegman, A. E.

Spiller, E.

W. Martienssen, E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[CrossRef]

Starr, E. F.

Steakley, B. C.

R. Targ, J. G. Hawley, B. C. Steakley, L. L. Ames, “Airborne lidar wind detection at 2 µm,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 178–181.

Streiff, M. L.

Targ, R.

R. Targ, J. G. Hawley, B. C. Steakley, L. L. Ames, “Airborne lidar wind detection at 2 µm,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 178–181.

Teich, M. C.

M. C. Teich, “Infrared heterodyne detection,” Proc. IEEE 56, 37–46 (1968).
[CrossRef]

Van Allen, E. J.

van der Lann, J. E.

Veldkamp, W. B.

Walker, A. C.

Wang, J. Y.

Westergren, U.

B. Willen, U. Westergren, H. Asonen, “High-gain high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron. Device Lett. 16, 479–481 (1995).
[CrossRef]

Willen, B.

B. Willen, U. Westergren, H. Asonen, “High-gain high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron. Device Lett. 16, 479–481 (1995).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).

Zatti, S.

Zernike, F.

F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 8, 785–795 (1938).
[CrossRef]

Am. J. Phys. (3)

A. T. Forrestor, “On coherence properties of light waves,” Am. J. Phys. 24, 192–196 (1956).
[CrossRef]

W. Martienssen, E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964).
[CrossRef]

A. B. Haner, N. R. Isenor, “Intensity correlations from pseudothermal light sources,” Am. J. Phys. 38, 748–750 (1970).
[CrossRef]

Appl. Opt. (11)

H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1566 (1966).
[CrossRef] [PubMed]

A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966).
[CrossRef] [PubMed]

B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979).
[CrossRef] [PubMed]

W. B. Veldkamp, “Holographic local oscillator beam multiplexing for array heterodyne detection,” Appl. Opt. 22, 891–900 (1983).
[CrossRef]

W. B. Veldkamp, E. J. Van Allen, “Binary holographic LO beam multiplexer for IR imaging detector arrays,” Appl. Opt. 22, 1497–1506 (1983).
[CrossRef] [PubMed]

J. Y. Wang, B. J. Bartholomew, M. L. Streiff, E. F. Starr, “Imaging CO2 laser radar field tests,” Appl. Opt. 23, 2565–2571 (1984).
[CrossRef]

J. F. Kusters, B. J. Rye, A. C. Walker, “Spatial weighting in laboratory light scattering experiments,” Appl. Opt. 28, 657–664 (1989).
[CrossRef] [PubMed]

K. I. Schultz, S. Fisher, “Ground-based laser radar measurements of satellite vibrations,” Appl. Opt. 31, 7690–7695 (1992).
[CrossRef] [PubMed]

C. B. Carlisle, J. E. van der Lann, L. W. Carr, P. Adam, J. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
[CrossRef] [PubMed]

R. Dädandliker, M. Geiser, C. Giunti, S. Zatti, G. Margheri, “Improvement of speckle statistics in double-wavelength superheterodyne interferometry,” Appl. Opt. 34, 7197–7201 (1995).
[CrossRef]

C. A. Bennett, R. K. Richards, D. P. Hutchinson, “Absolute broadband calibration procedure for infrared heterodyne receivers,” Appl. Opt. 27, 3324–3325 (1988).
[CrossRef] [PubMed]

IEEE Electron. Device Lett. (3)

H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, “Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors,” IEEE Electron. Device Lett. 16, 253–255 (1995).
[CrossRef]

B. Willen, U. Westergren, H. Asonen, “High-gain high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron. Device Lett. 16, 479–481 (1995).
[CrossRef]

M.-C. Ho, R. A. Johnson, W. J. Ho, M. F. Chang, P. M. Asbeck, “High-performance low-base-collector capacitance AlGaAs/GaAs heterojunction bipolar transistors fabricated by deep ion implantation,” IEEE Electron. Device Lett. 16, 512–514 (1995).
[CrossRef]

Infrared Phys. Technol. (1)

A. Rogalski, “New trends in infrared detector technology,” Infrared Phys. Technol. 35, 1–21 (1994).
[CrossRef]

Opt. Lett. (1)

Physica (1)

F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 8, 785–795 (1938).
[CrossRef]

Plasma Phys. (1)

E. Holzhauser, J. H. Massig, “An analysis of optical mixing in plasma scattering experiments,” Plasma Phys. 20, 867–877 (1978).
[CrossRef]

Proc. IEEE (1)

M. C. Teich, “Infrared heterodyne detection,” Proc. IEEE 56, 37–46 (1968).
[CrossRef]

Other (3)

R. Targ, J. G. Hawley, B. C. Steakley, L. L. Ames, “Airborne lidar wind detection at 2 µm,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 178–181.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975), Chap. 2, pp. 9–75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Heterodyne receiver.

Fig. 2
Fig. 2

Coherent infrared imaging camera schematic.

Fig. 3
Fig. 3

Local oscillator profiles at the detector plane.

Fig. 4
Fig. 4

Video and heterodyne system response to the image of a point source (small blackbody).

Fig. 5
Fig. 5

Heterodyne and video images of a small bottle of ammonium hydroxide.

Fig. 6
Fig. 6

Heterodyne image of a rotating squirrel-cage fan in which each pixel is rendered to represent the observed Doppler shift.

Fig. 7
Fig. 7

Intensity distributions for speckle data with use of 3 × 3 array averaging and individual pixels.

Fig. 8
Fig. 8

Observed speckle reduction compared with expected N improvement in the signal-to-noise ratio for spatial averaging.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Vt=k1Est+ELOt2,
Vi.f.t=k2PsPLOcosωi.f.t,
VRtPsPLO.
EFβ=Efsinββ,
EFθ=E0sincβsinNαNsinα,
ωdω0=fλπ,
Rdo=do1+ZDdo2,
Aciλ2Ωci,

Metrics