Abstract

There are five mutually dependent variables relevant to Brillouin lidar measurements of temperature and sound speed in the ocean; they are (1) the Brillouin shift, (2) the sound speed, (3) the index of refraction, (4) the temperature, and (5) the salinity. We use three well-known relations to analyze rigorously the interdependence of these five variables. Clearly, a Brillouin shift measurement does not provide a stand-alone determination of temperature or sound speed; one more variable or one more relation must be known. The use of mean values of salinity that have been obtained by an analysis of a large set of historical in situ data is considered for this additional relation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Collins, J. A. Bell, R. Zaoni, I. S. McDermid, J. B. Breckinridge, C. A. Sepulveda, “Recent progress in the measurement of temperature and salinity by optical scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 247–263 (1984).
    [CrossRef]
  2. G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sensing Environ. 36, 165–178 (1991).
    [CrossRef]
  3. D. A. Leonard, B. Caputo, “Remote sensing of the ocean mixed-layer depth,” Opt. Eng. 22, 288–291 (1983).
    [CrossRef]
  4. C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” (Avco Everett Research Laboratory, Inc., Everett, Mass., December1972). Available from National Technical Information Services, Springfield, Va. 22161.
  5. C. H. Chang, L. A. Young, D. A. Leonard, “Remote Measurement of Fluid Temperature by Raman Scattered Radiation,” U.S. Patent3,986,775 (19October1976).
  6. D. A. Leonard, B. Caputo, F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
    [CrossRef] [PubMed]
  7. J. L. Guagliardo, H. L. Dufilho, “Range resolved Brillouin scattering using a pulsed laser,” Rev. Sci. Instrum. 51, 79–81 (1980).
    [CrossRef]
  8. D. A. Leonard, B. Caputo, “Raman LIDAR for the remote measurement of subsurface ocean parameters,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 277–280 (1984).
    [CrossRef]
  9. J. G. Hirschberg, J. D. Byrne, A. W. Wouters, G. C. Boynton, “Speed of sound and temperature in the ocean by Brillouin scattering,” Appl. Opt. 23, 2624–2628 (1984).
    [CrossRef] [PubMed]
  10. J. G. Hirschberg, J. D. Byrne, “Rapid underwater ocean measurements using Brillouin scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 270–276 (1984).
    [CrossRef]
  11. D. A. Leonard, H. E. Sweeney, “Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques,” in Ocean Optics IX, M. A. Blizard, ed., Proc. SPIE925, 407–414 (1988).
    [CrossRef]
  12. D. A. Leonard, H. E. Sweeney, “A comparison of stimulated and spontaneous laser radar methods for the remote sensing of ocean physical properties,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 568–582 (1990).
    [CrossRef]
  13. C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
    [CrossRef] [PubMed]
  14. Y. Emery, E. S. Fry, “Laboratory development of a LIDAR for measurement of sound velocity in the ocean using Brillouin scattering,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 210–215 (1997).
    [CrossRef]
  15. G. Sager, “Zur refraktion von licht im meerwasser,” Beitr. Meeresk. 33, 63–72 (1974).
  16. V. A. Del Grosso, “New equation for the speed of sound in natural waters (with comparisons to other equations),” J. Acoust. Soc. Am. 56, 1084–1091 (1974).
    [CrossRef]
  17. X. Quan, E. S. Fry, “An empirical expression for the index of refraction of sea water,” Appl. Opt. 34, 3477–3480 (1995).
    [CrossRef] [PubMed]
  18. “Oceanographic Station Profile Time Series,” (National Oceanographic Data Center, User Services Branch, Washington, D.C., 1993).
  19. S. W. Henderson, E. H. Yuen, E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd-YAG lasers,” Opt. Lett. 11, 715–717 (1986).
    [CrossRef] [PubMed]
  20. E. S. Fry, Q. Hu, X. Li, “Single-frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments,” Appl. Opt. 30, 1015–1017 (1991).
    [CrossRef] [PubMed]
  21. C. L. Korb, B. M. Gentry, S. X. Li, “Spaceborne lidar wind measurements with the edge technique, ” in Satellite Remote Sensing, C. Werner, ed., Proc. SPIE2310, 206–213 (1994).
  22. L. Bertotti, Y. Emery, C. Flesia, R. Miles, G. Galletti, E. Zanzotera, “Incoherent Doppler Wind Lidar Technologies,” (European Space Agency, European Space Research and Technology Centre, Noordwijk, The Netherlands, 1995).
  23. E. S. Fry, “Brillouin LIDAR Receiver Based on Edges of Absorption Lines of I2 and Br2,” (Texas A&M University, College Station, Texas, 1992).
  24. W. J. Emery, J. Meincke, “Global mass water summary and review,” Oceanologia Acta 9, 383–391 (1986).

1995 (1)

1992 (1)

1991 (2)

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sensing Environ. 36, 165–178 (1991).
[CrossRef]

E. S. Fry, Q. Hu, X. Li, “Single-frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments,” Appl. Opt. 30, 1015–1017 (1991).
[CrossRef] [PubMed]

1986 (2)

1984 (1)

1983 (1)

D. A. Leonard, B. Caputo, “Remote sensing of the ocean mixed-layer depth,” Opt. Eng. 22, 288–291 (1983).
[CrossRef]

1980 (1)

J. L. Guagliardo, H. L. Dufilho, “Range resolved Brillouin scattering using a pulsed laser,” Rev. Sci. Instrum. 51, 79–81 (1980).
[CrossRef]

1979 (1)

1974 (2)

G. Sager, “Zur refraktion von licht im meerwasser,” Beitr. Meeresk. 33, 63–72 (1974).

V. A. Del Grosso, “New equation for the speed of sound in natural waters (with comparisons to other equations),” J. Acoust. Soc. Am. 56, 1084–1091 (1974).
[CrossRef]

Bell, J. A.

D. J. Collins, J. A. Bell, R. Zaoni, I. S. McDermid, J. B. Breckinridge, C. A. Sepulveda, “Recent progress in the measurement of temperature and salinity by optical scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 247–263 (1984).
[CrossRef]

Bertotti, L.

L. Bertotti, Y. Emery, C. Flesia, R. Miles, G. Galletti, E. Zanzotera, “Incoherent Doppler Wind Lidar Technologies,” (European Space Agency, European Space Research and Technology Centre, Noordwijk, The Netherlands, 1995).

Boynton, G. C.

Breckinridge, J. B.

D. J. Collins, J. A. Bell, R. Zaoni, I. S. McDermid, J. B. Breckinridge, C. A. Sepulveda, “Recent progress in the measurement of temperature and salinity by optical scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 247–263 (1984).
[CrossRef]

Byrne, J. D.

J. G. Hirschberg, J. D. Byrne, A. W. Wouters, G. C. Boynton, “Speed of sound and temperature in the ocean by Brillouin scattering,” Appl. Opt. 23, 2624–2628 (1984).
[CrossRef] [PubMed]

J. G. Hirschberg, J. D. Byrne, “Rapid underwater ocean measurements using Brillouin scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 270–276 (1984).
[CrossRef]

Caputo, B.

D. A. Leonard, B. Caputo, “Remote sensing of the ocean mixed-layer depth,” Opt. Eng. 22, 288–291 (1983).
[CrossRef]

D. A. Leonard, B. Caputo, F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
[CrossRef] [PubMed]

D. A. Leonard, B. Caputo, “Raman LIDAR for the remote measurement of subsurface ocean parameters,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 277–280 (1984).
[CrossRef]

Carnes, M.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sensing Environ. 36, 165–178 (1991).
[CrossRef]

Chang, C. H.

C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” (Avco Everett Research Laboratory, Inc., Everett, Mass., December1972). Available from National Technical Information Services, Springfield, Va. 22161.

C. H. Chang, L. A. Young, D. A. Leonard, “Remote Measurement of Fluid Temperature by Raman Scattered Radiation,” U.S. Patent3,986,775 (19October1976).

Collins, D. J.

D. J. Collins, J. A. Bell, R. Zaoni, I. S. McDermid, J. B. Breckinridge, C. A. Sepulveda, “Recent progress in the measurement of temperature and salinity by optical scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 247–263 (1984).
[CrossRef]

Del Grosso, V. A.

V. A. Del Grosso, “New equation for the speed of sound in natural waters (with comparisons to other equations),” J. Acoust. Soc. Am. 56, 1084–1091 (1974).
[CrossRef]

Dufilho, H. L.

J. L. Guagliardo, H. L. Dufilho, “Range resolved Brillouin scattering using a pulsed laser,” Rev. Sci. Instrum. 51, 79–81 (1980).
[CrossRef]

Emery, W. J.

W. J. Emery, J. Meincke, “Global mass water summary and review,” Oceanologia Acta 9, 383–391 (1986).

Emery, Y.

L. Bertotti, Y. Emery, C. Flesia, R. Miles, G. Galletti, E. Zanzotera, “Incoherent Doppler Wind Lidar Technologies,” (European Space Agency, European Space Research and Technology Centre, Noordwijk, The Netherlands, 1995).

Y. Emery, E. S. Fry, “Laboratory development of a LIDAR for measurement of sound velocity in the ocean using Brillouin scattering,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 210–215 (1997).
[CrossRef]

Flesia, C.

L. Bertotti, Y. Emery, C. Flesia, R. Miles, G. Galletti, E. Zanzotera, “Incoherent Doppler Wind Lidar Technologies,” (European Space Agency, European Space Research and Technology Centre, Noordwijk, The Netherlands, 1995).

Fry, E. S.

X. Quan, E. S. Fry, “An empirical expression for the index of refraction of sea water,” Appl. Opt. 34, 3477–3480 (1995).
[CrossRef] [PubMed]

E. S. Fry, Q. Hu, X. Li, “Single-frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments,” Appl. Opt. 30, 1015–1017 (1991).
[CrossRef] [PubMed]

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sensing Environ. 36, 165–178 (1991).
[CrossRef]

S. W. Henderson, E. H. Yuen, E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd-YAG lasers,” Opt. Lett. 11, 715–717 (1986).
[CrossRef] [PubMed]

Y. Emery, E. S. Fry, “Laboratory development of a LIDAR for measurement of sound velocity in the ocean using Brillouin scattering,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 210–215 (1997).
[CrossRef]

E. S. Fry, “Brillouin LIDAR Receiver Based on Edges of Absorption Lines of I2 and Br2,” (Texas A&M University, College Station, Texas, 1992).

Galletti, G.

L. Bertotti, Y. Emery, C. Flesia, R. Miles, G. Galletti, E. Zanzotera, “Incoherent Doppler Wind Lidar Technologies,” (European Space Agency, European Space Research and Technology Centre, Noordwijk, The Netherlands, 1995).

Gentry, B. M.

C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, S. X. Li, “Spaceborne lidar wind measurements with the edge technique, ” in Satellite Remote Sensing, C. Werner, ed., Proc. SPIE2310, 206–213 (1994).

Guagliardo, J. L.

J. L. Guagliardo, H. L. Dufilho, “Range resolved Brillouin scattering using a pulsed laser,” Rev. Sci. Instrum. 51, 79–81 (1980).
[CrossRef]

Harding, J. M.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sensing Environ. 36, 165–178 (1991).
[CrossRef]

Henderson, S. W.

Hickman, G. D.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sensing Environ. 36, 165–178 (1991).
[CrossRef]

Hirschberg, J. G.

J. G. Hirschberg, J. D. Byrne, A. W. Wouters, G. C. Boynton, “Speed of sound and temperature in the ocean by Brillouin scattering,” Appl. Opt. 23, 2624–2628 (1984).
[CrossRef] [PubMed]

J. G. Hirschberg, J. D. Byrne, “Rapid underwater ocean measurements using Brillouin scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 270–276 (1984).
[CrossRef]

Hoge, F. E.

Hu, Q.

Kattawar, G. W.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sensing Environ. 36, 165–178 (1991).
[CrossRef]

Korb, C. L.

C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, S. X. Li, “Spaceborne lidar wind measurements with the edge technique, ” in Satellite Remote Sensing, C. Werner, ed., Proc. SPIE2310, 206–213 (1994).

Leonard, D. A.

D. A. Leonard, B. Caputo, “Remote sensing of the ocean mixed-layer depth,” Opt. Eng. 22, 288–291 (1983).
[CrossRef]

D. A. Leonard, B. Caputo, F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
[CrossRef] [PubMed]

D. A. Leonard, B. Caputo, “Raman LIDAR for the remote measurement of subsurface ocean parameters,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 277–280 (1984).
[CrossRef]

C. H. Chang, L. A. Young, D. A. Leonard, “Remote Measurement of Fluid Temperature by Raman Scattered Radiation,” U.S. Patent3,986,775 (19October1976).

D. A. Leonard, H. E. Sweeney, “Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques,” in Ocean Optics IX, M. A. Blizard, ed., Proc. SPIE925, 407–414 (1988).
[CrossRef]

D. A. Leonard, H. E. Sweeney, “A comparison of stimulated and spontaneous laser radar methods for the remote sensing of ocean physical properties,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 568–582 (1990).
[CrossRef]

Li, S. X.

C. L. Korb, B. M. Gentry, S. X. Li, “Spaceborne lidar wind measurements with the edge technique, ” in Satellite Remote Sensing, C. Werner, ed., Proc. SPIE2310, 206–213 (1994).

Li, X.

McDermid, I. S.

D. J. Collins, J. A. Bell, R. Zaoni, I. S. McDermid, J. B. Breckinridge, C. A. Sepulveda, “Recent progress in the measurement of temperature and salinity by optical scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 247–263 (1984).
[CrossRef]

Meincke, J.

W. J. Emery, J. Meincke, “Global mass water summary and review,” Oceanologia Acta 9, 383–391 (1986).

Miles, R.

L. Bertotti, Y. Emery, C. Flesia, R. Miles, G. Galletti, E. Zanzotera, “Incoherent Doppler Wind Lidar Technologies,” (European Space Agency, European Space Research and Technology Centre, Noordwijk, The Netherlands, 1995).

Pressman, A.

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sensing Environ. 36, 165–178 (1991).
[CrossRef]

Quan, X.

Sager, G.

G. Sager, “Zur refraktion von licht im meerwasser,” Beitr. Meeresk. 33, 63–72 (1974).

Sepulveda, C. A.

D. J. Collins, J. A. Bell, R. Zaoni, I. S. McDermid, J. B. Breckinridge, C. A. Sepulveda, “Recent progress in the measurement of temperature and salinity by optical scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 247–263 (1984).
[CrossRef]

Sweeney, H. E.

D. A. Leonard, H. E. Sweeney, “Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques,” in Ocean Optics IX, M. A. Blizard, ed., Proc. SPIE925, 407–414 (1988).
[CrossRef]

D. A. Leonard, H. E. Sweeney, “A comparison of stimulated and spontaneous laser radar methods for the remote sensing of ocean physical properties,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 568–582 (1990).
[CrossRef]

Weng, C. Y.

Wouters, A. W.

Young, L. A.

C. H. Chang, L. A. Young, D. A. Leonard, “Remote Measurement of Fluid Temperature by Raman Scattered Radiation,” U.S. Patent3,986,775 (19October1976).

C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” (Avco Everett Research Laboratory, Inc., Everett, Mass., December1972). Available from National Technical Information Services, Springfield, Va. 22161.

Yuen, E. H.

Zanzotera, E.

L. Bertotti, Y. Emery, C. Flesia, R. Miles, G. Galletti, E. Zanzotera, “Incoherent Doppler Wind Lidar Technologies,” (European Space Agency, European Space Research and Technology Centre, Noordwijk, The Netherlands, 1995).

Zaoni, R.

D. J. Collins, J. A. Bell, R. Zaoni, I. S. McDermid, J. B. Breckinridge, C. A. Sepulveda, “Recent progress in the measurement of temperature and salinity by optical scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 247–263 (1984).
[CrossRef]

Appl. Opt. (5)

Beitr. Meeresk. (1)

G. Sager, “Zur refraktion von licht im meerwasser,” Beitr. Meeresk. 33, 63–72 (1974).

J. Acoust. Soc. Am. (1)

V. A. Del Grosso, “New equation for the speed of sound in natural waters (with comparisons to other equations),” J. Acoust. Soc. Am. 56, 1084–1091 (1974).
[CrossRef]

Oceanologia Acta (1)

W. J. Emery, J. Meincke, “Global mass water summary and review,” Oceanologia Acta 9, 383–391 (1986).

Opt. Eng. (1)

D. A. Leonard, B. Caputo, “Remote sensing of the ocean mixed-layer depth,” Opt. Eng. 22, 288–291 (1983).
[CrossRef]

Opt. Lett. (1)

Remote Sensing Environ. (1)

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sensing Environ. 36, 165–178 (1991).
[CrossRef]

Rev. Sci. Instrum. (1)

J. L. Guagliardo, H. L. Dufilho, “Range resolved Brillouin scattering using a pulsed laser,” Rev. Sci. Instrum. 51, 79–81 (1980).
[CrossRef]

Other (12)

D. A. Leonard, B. Caputo, “Raman LIDAR for the remote measurement of subsurface ocean parameters,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 277–280 (1984).
[CrossRef]

Y. Emery, E. S. Fry, “Laboratory development of a LIDAR for measurement of sound velocity in the ocean using Brillouin scattering,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 210–215 (1997).
[CrossRef]

“Oceanographic Station Profile Time Series,” (National Oceanographic Data Center, User Services Branch, Washington, D.C., 1993).

D. J. Collins, J. A. Bell, R. Zaoni, I. S. McDermid, J. B. Breckinridge, C. A. Sepulveda, “Recent progress in the measurement of temperature and salinity by optical scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 247–263 (1984).
[CrossRef]

C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” (Avco Everett Research Laboratory, Inc., Everett, Mass., December1972). Available from National Technical Information Services, Springfield, Va. 22161.

C. H. Chang, L. A. Young, D. A. Leonard, “Remote Measurement of Fluid Temperature by Raman Scattered Radiation,” U.S. Patent3,986,775 (19October1976).

J. G. Hirschberg, J. D. Byrne, “Rapid underwater ocean measurements using Brillouin scattering,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE489, 270–276 (1984).
[CrossRef]

D. A. Leonard, H. E. Sweeney, “Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques,” in Ocean Optics IX, M. A. Blizard, ed., Proc. SPIE925, 407–414 (1988).
[CrossRef]

D. A. Leonard, H. E. Sweeney, “A comparison of stimulated and spontaneous laser radar methods for the remote sensing of ocean physical properties,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 568–582 (1990).
[CrossRef]

C. L. Korb, B. M. Gentry, S. X. Li, “Spaceborne lidar wind measurements with the edge technique, ” in Satellite Remote Sensing, C. Werner, ed., Proc. SPIE2310, 206–213 (1994).

L. Bertotti, Y. Emery, C. Flesia, R. Miles, G. Galletti, E. Zanzotera, “Incoherent Doppler Wind Lidar Technologies,” (European Space Agency, European Space Research and Technology Centre, Noordwijk, The Netherlands, 1995).

E. S. Fry, “Brillouin LIDAR Receiver Based on Edges of Absorption Lines of I2 and Br2,” (Texas A&M University, College Station, Texas, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Difference between the temperature T in Table 3 and T(S, νB) given by Eq. (5) for each (S, νB, T) combination listed in Table 3. The abscissa is temperature rather than νB so as to simplify identification of the corresponding points in Table 3.

Fig. 2
Fig. 2

Temperature T(S, νB) shown as a function of salinity S with the Brillouin frequency shift νB as a parameter between 7.4 and 7.7 GHz in steps of 50 MHz.

Fig. 3
Fig. 3

Temperature T(S, νB) shown as a function of the Brillouin frequency shift νB for values of salinity S from 30‰ to 40‰ in steps of 2.5‰.

Fig. 4
Fig. 4

Difference between the sound speed vs in Table 3 and vs(S, νB) given by Eq. (6) for each (S, νB, vs) combination listed in Table 3. The abscissa is temperature rather than vs so as to simplify identification of the corresponding points in Table 3.

Fig. 5
Fig. 5

Sound speed vs(S, νB) shown as a function of salinity S with the Brillouin frequency shift νB as a parameter (in steps of 50 MHz).

Fig. 6
Fig. 6

Sound speed vs(S, νB) shown as a function of the Brillouin frequency shift νB for values of salinity S from 30‰ to 40‰ in steps of 5‰.

Fig. 7
Fig. 7

Observed values of the salinity at 32°15′ S 17°30′ E in the South Atlantic near the Cape of Good Hope at a depth of 10 m. The sampling area is 30 × 100 km2.

Fig. 8
Fig. 8

Cumulative histogram of the variability of the salinity standard deviation for 113 locations for depths of (a) 10 m and (b) 100 m.

Fig. 9
Fig. 9

Seasonal variability of the salinity at 34°00′ N 164°00′ E in the middle of the North Pacific at depths of 10, 50, and 100 m. Sampling area is 50 × 50 km2. The standard deviation represents the overall variability; the seasonal trend is not taken into account in its determination.

Fig. 10
Fig. 10

Uncertainty δT in the determination of temperature as a function of the salinity for δS = 0.5‰ and δνB = 1 MHz and various Brillouin shifts from 7.4 to 7.7 GHz in steps of 50 MHz.

Fig. 11
Fig. 11

Uncertainty δT (left side, y axis) in the determination of temperature is plotted as a function of the salinity standard deviation for δνB = 1 MHz (solid curve) and δνB = 4 MHz (dotted curve). In both cases we have taken νB = 7.5 GHz and S = 35‰. It is superposed on the salinity standard deviation cumulative probability distribution at 100 m (right side, y axis) [same as Fig. 8(b)].

Fig. 12
Fig. 12

Uncertainty δvs in the determination of sound speed as a function of salinity with νB as a parameter that is varied from 7.4 to 7.7 GHz in steps of 50 MHz. For these calculations we have taken δνB = 1 MHz and δS = 0.5‰.

Fig. 13
Fig. 13

Uncertainty δvs (left side, y axis) in the determination of sound speed is plotted as a function of the salinity standard deviation for δνB = 1 MHz (solid curve) and δνB = 4 MHz (dotted curve). In both cases we have taken νB = 7.5 GHz and S = 35‰. It is superposed on the salinity standard deviation cumulative probability distribution at 100 m (right side, y axis) [same as Fig. 8(b)].

Tables (5)

Tables Icon

Table 1 Coefficients in the Empirical Expression for the Sound Speed vs(S, T) as qouted by Del Grossoa

Tables Icon

Table 2 Coefficients in the Empirical Expression for the Refractive-Index n(S, T, λ)a

Tables Icon

Table 3 n, vs(m/s), νB(GHz) for the Ranges 30‰ ≤ S ≤ 40‰ and 0 °C ≤ T ≤ 40 °C, with p = 0 atm and λ = 532.57 nm

Tables Icon

Table 4 Coefficients in the Empirical Expression for T(S, νB) at 532.57 nm

Tables Icon

Table 5 Coefficients in the Empirical Expression for vs(S, νB) at 532.57 nm

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

νBS, T, p=2nS, T, λλvsS, T, p,
vsS, T, p=c0+c1T+c2T2+c3T3+c4S+c5S2+c6TS+c7T2S+fS, T, p,
vspS=35,T=10 °C,p=0=0.16m/satm,  vsTS=35,T=10° C,p=0=3.5m/s°C,  vsSS=35,T=10° C,p=0=1.22m/s.
nS, T, λ=n0+Sn1+n2T+n3T2+n4T2+n5+n6S+n7Tλ+n8λ2+n9λ3,
TS, νB=t0+t1νB-7.5+t2νB-7.52+t3νB-7.53+t4νB-7.56+St5+t6νB-7.5+t7νB-7.52+t8νB-7.53,
vsS, νB=c0+c1νB-7.5+c2νB-7.52+c3νB-7.53+c4νB-7.55+Sc5+c6νB-7.52+c7νB-7.53,
TSνB=7.5GHz=t5-0.4 °C/.
TνBS=35,νB=7.5GHz=t1+St60.055 °C/MHz.
vsSνB=7.5GHz=c5-0.25 m/s/.
vsνBS=35,νB=7.5GHz=c10.2 m/s/MHz.
δT=TS2δS2+TνB2δνB21/2,
δvs=vsS2δS2+vsνB2δνB21/2.

Metrics