Abstract

We present the results of the aerosol measurements carried out over the Aegean Sea during the Photochemical Activity and Solar Ultraviolet Radiation campaign held in Greece during June 1996. Simultaneous observations performed with a lidar and a double-monochromator spectrophotometer allowed us to retrieve the optical depth, the Ångström coefficient, and the backscatter-to-extinction ratio. The Sun photometric data can be used to improve quantitative aerosol measurements by lidar in the Planetary Boundary Layer. Systematic errors could arise otherwise, because the value of the backscatter-to-extinction ratio has to be supplied. Instead this ratio can be retrieved experimentally by use of an iterative solution of the lidar equation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Reagan, J. Spinhirn, D. Byrne, D. Thomson, R. Gena, Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911–928 (1977).
    [CrossRef]
  2. C. Brognier, R. Santer, B. Diallo, M. Herman, J. Lenoble, H. Jaeger, “Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation,” J. Geophys. Res. 97, 20,805–20,823 (1992).
    [CrossRef]
  3. D. Krueger, L. Caldwell, H. Alvarez, C. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high-spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
    [CrossRef]
  4. H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid-water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
    [CrossRef]
  5. D. Baumgardner, J. E. Dye, G. Barr, K. Barr, K. Kelly, K. R. Chan, “Refractive indices of aerosols in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 23, 749–752 (1996).
    [CrossRef]
  6. P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
    [PubMed]
  7. Y. Sasano, E. V. Browell, S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
    [CrossRef] [PubMed]
  8. P. Di Girolamo, M. Cacciani, A. Di Sarra, G. Fiocco, D. Fuà, “Lidar observations of the Pinatubo aerosol layer at Thule, Greenland,” Geophys. Res. Lett. 21, 1295–1298 (1994).
    [CrossRef]
  9. G. F. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  10. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [CrossRef] [PubMed]
  11. R. M. Endlich, F. L. Ludwig, E. E. Uthe, “An automated method for determining the mixing depth from lidar observations,” Atmos. Environ. 13, 1051–1056 (1979).
    [CrossRef]
  12. S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organised convection in the Planetary Boundary Layer,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
    [CrossRef]
  13. T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of entrainment into thermals and mixed layers,” J. Clim. Appl. Meteorol. 26, 774–788 (1987).
    [CrossRef]
  14. D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994).
    [CrossRef]
  15. T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
    [CrossRef] [PubMed]
  16. A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).
  17. D. S. Balis, A. F. Bais, A. Papayannis, F. Marenco, V. Santacesaria, C. S. Zerefos, “Comparison of model calculations with spectral solar UV measurements,” in Proceedings of the XVIII Quadriennal Ozone Symposium, G. Visconti, R. Bojkov, eds. (Parco Scientifico e Tecnologico d’Abruzzo, to be published).
  18. R. T. H. Collis, P. B. Russell, “Lidar measurements of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 71–151.
    [CrossRef]
  19. U.S. Standard Atmosphere (National Oceanic and Atmospheric Administration, NASA, U.S. Air Force, Washington, D. C., October1976).
  20. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
    [CrossRef] [PubMed]
  21. T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
    [CrossRef]
  22. B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar,” Appl. Opt. 27, 3299–3306 (1988).
    [CrossRef] [PubMed]
  23. V. A. Kovalev, “Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient,” Appl. Opt. 34, 3457–3462 (1995).
    [CrossRef] [PubMed]
  24. V. A. Kovalev, “Lidar measurements of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios,” Appl. Opt. 32, 6053–6065 (1993).
    [CrossRef] [PubMed]
  25. A. Papayannis, D. Balis, “Study of the structure of the lower troposphere over Athens using a backscattering lidar during the MEDCAPHOT-TRACE experiment: measurements over a suburban area,” Urban Environ. (to be published).
  26. T. Halldorsson, J. Langerholc, “Geometrical form factors for the LIDAR function,” Appl. Opt. 17, 240–244 (1978).
    [CrossRef] [PubMed]
  27. A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UVB measurements with the double- and single-monochromator Brewer ozone spectrophotometer,” Geophys. Res. Lett. 23, 833–836 (1996).
    [CrossRef]
  28. A. F. Bais, “Absolute spectral measurements of the direct solar ultraviolet irradiance using a Brewer spectrophotometer,” Appl. Opt. 36, 5199–5204 (1997).
    [CrossRef] [PubMed]
  29. M. E. Vanhoosier, J. F. Bartoe, G. E. Brueckner, D. K. Prinz, “Absolute solar spectral irradiance 120nm-400nm (results from the Solar Ultraviolet Spectral Irradiance Monitor-SUSIM-experiment on board Spacelab-2),” Astron. Lett. Commun. 27, 163–168 (1988).
  30. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527 (1974), as reported by H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27, 862–871 (1988).
    [CrossRef]
  31. P. M. Teillet, “Rayleigh optical depth comparisons from various sources,” Appl. Opt. 29, 1897–1900 (1990).
    [CrossRef] [PubMed]
  32. L. T. Molina, M. J. Molina, “Absolute cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
    [CrossRef]
  33. M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of ozone in the wavelength region 339-355 nm at temperatures 220-293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
    [CrossRef]
  34. A. Angstrom, “On the atmospheric transmission of sun radiation and on dust in the air,” Georg. Ann. Deutch. 12, 156 (1929), as reported by E. Trakhovsky, E. P. Shettle, “Wavelength scaling of atmospheric aerosol scattering and extinction,” Appl. Opt. 26, 5148–5153 (1987).
  35. K. Y. Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969).
  36. A. Borghesi, E. Bussoletti, G. Falcicchia, A. Minafra, “Determination of atmospheric water vapour and turbidity parameters from diurnal infrared hygrometer and turbidimeter data,” Infrared Phys. 22, 149–155 (1982).
    [CrossRef]
  37. D. P. Woodman, “Limitations in using atmospheric models for laser transmission estimates,” Appl. Opt. 13, 2193–2195 (1974).
    [CrossRef] [PubMed]
  38. V. E. Cachorro, J. L. Casanova, “Punctualizaciones sobre diversos aspectos en la utilizacion de la formula de Angstrom,” Rev. Geofis. 45, 123–130 (1989), as reported in Ref. 40.
  39. L. Je, M. Je Tai, “Properties of the atmospheric aerosols inverted from optical remote sensing,” Atmos. Environ. Part A 24, 2512–2522 (1990).
  40. A. Trier, H. Horvath, “A study of the aerosol of Santiago de Chile. II: mass extinction coefficients, visibilities and Angstrom exponents,” Atmos. Environ. Part A 27, 385–395 (1993).
    [CrossRef]
  41. J. A. Ogren, P. J. Sheridan, “Vertical and horizontal variability of aerosol single scattering albedo and hemispheric backscatter fraction over the United States” in Nucleation and Atmospheric Aerosols 1996, M. Kulmala, P. E. Wagner, eds. (Elsevier, New York, 1996), pp. 780–783.
    [CrossRef]
  42. J. E. A. Selby, E. P. Shettle, R. A. McClatchey, “Atmospheric transmittance from 0.25 to 28.5 micron: supplement to lowtran 3b (1976),” U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).
  43. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” , Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  44. Y. S. Lyubotseva, L. G. Yaskovich, “Aerosol absorption within the wavelength interval 0.25 to 0.8 micron,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 922–932 (1982), as reported by H. Horvath, “Atmospheric light absorption-a review,” Atmos. Environ. Part A 27, 293–317 (1993).
  45. E. M. Patterson, “Optical properties of the crustal aerosol: relation to chemical and physical characteristics,” J. Geophys. Res. 86, 3236–3246 (1981).
    [CrossRef]
  46. J. T. Twitty, J. A. Weinman, “Radiative properties of carbonaceous aerosols,” Appl. Meteorol. 10, 725–731 (1971).
    [CrossRef]

1997

1996

D. Baumgardner, J. E. Dye, G. Barr, K. Barr, K. Kelly, K. R. Chan, “Refractive indices of aerosols in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 23, 749–752 (1996).
[CrossRef]

A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UVB measurements with the double- and single-monochromator Brewer ozone spectrophotometer,” Geophys. Res. Lett. 23, 833–836 (1996).
[CrossRef]

1995

1994

D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994).
[CrossRef]

P. Di Girolamo, M. Cacciani, A. Di Sarra, G. Fiocco, D. Fuà, “Lidar observations of the Pinatubo aerosol layer at Thule, Greenland,” Geophys. Res. Lett. 21, 1295–1298 (1994).
[CrossRef]

T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
[CrossRef] [PubMed]

1993

V. A. Kovalev, “Lidar measurements of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios,” Appl. Opt. 32, 6053–6065 (1993).
[CrossRef] [PubMed]

A. Trier, H. Horvath, “A study of the aerosol of Santiago de Chile. II: mass extinction coefficients, visibilities and Angstrom exponents,” Atmos. Environ. Part A 27, 385–395 (1993).
[CrossRef]

D. Krueger, L. Caldwell, H. Alvarez, C. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high-spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
[CrossRef]

1992

C. Brognier, R. Santer, B. Diallo, M. Herman, J. Lenoble, H. Jaeger, “Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation,” J. Geophys. Res. 97, 20,805–20,823 (1992).
[CrossRef]

1990

L. Je, M. Je Tai, “Properties of the atmospheric aerosols inverted from optical remote sensing,” Atmos. Environ. Part A 24, 2512–2522 (1990).

P. M. Teillet, “Rayleigh optical depth comparisons from various sources,” Appl. Opt. 29, 1897–1900 (1990).
[CrossRef] [PubMed]

1989

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of ozone in the wavelength region 339-355 nm at temperatures 220-293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

V. E. Cachorro, J. L. Casanova, “Punctualizaciones sobre diversos aspectos en la utilizacion de la formula de Angstrom,” Rev. Geofis. 45, 123–130 (1989), as reported in Ref. 40.

1988

B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar,” Appl. Opt. 27, 3299–3306 (1988).
[CrossRef] [PubMed]

M. E. Vanhoosier, J. F. Bartoe, G. E. Brueckner, D. K. Prinz, “Absolute solar spectral irradiance 120nm-400nm (results from the Solar Ultraviolet Spectral Irradiance Monitor-SUSIM-experiment on board Spacelab-2),” Astron. Lett. Commun. 27, 163–168 (1988).

1987

T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
[CrossRef]

T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of entrainment into thermals and mixed layers,” J. Clim. Appl. Meteorol. 26, 774–788 (1987).
[CrossRef]

1986

L. T. Molina, M. J. Molina, “Absolute cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

1985

1984

1982

Y. S. Lyubotseva, L. G. Yaskovich, “Aerosol absorption within the wavelength interval 0.25 to 0.8 micron,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 922–932 (1982), as reported by H. Horvath, “Atmospheric light absorption-a review,” Atmos. Environ. Part A 27, 293–317 (1993).

A. Borghesi, E. Bussoletti, G. Falcicchia, A. Minafra, “Determination of atmospheric water vapour and turbidity parameters from diurnal infrared hygrometer and turbidimeter data,” Infrared Phys. 22, 149–155 (1982).
[CrossRef]

1981

H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid-water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
[CrossRef]

E. M. Patterson, “Optical properties of the crustal aerosol: relation to chemical and physical characteristics,” J. Geophys. Res. 86, 3236–3246 (1981).
[CrossRef]

1979

P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
[PubMed]

R. M. Endlich, F. L. Ludwig, E. E. Uthe, “An automated method for determining the mixing depth from lidar observations,” Atmos. Environ. 13, 1051–1056 (1979).
[CrossRef]

1978

1977

J. Reagan, J. Spinhirn, D. Byrne, D. Thomson, R. Gena, Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

1974

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527 (1974), as reported by H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef]

D. P. Woodman, “Limitations in using atmospheric models for laser transmission estimates,” Appl. Opt. 13, 2193–2195 (1974).
[CrossRef] [PubMed]

1971

J. T. Twitty, J. A. Weinman, “Radiative properties of carbonaceous aerosols,” Appl. Meteorol. 10, 725–731 (1971).
[CrossRef]

1929

A. Angstrom, “On the atmospheric transmission of sun radiation and on dust in the air,” Georg. Ann. Deutch. 12, 156 (1929), as reported by E. Trakhovsky, E. P. Shettle, “Wavelength scaling of atmospheric aerosol scattering and extinction,” Appl. Opt. 26, 5148–5153 (1987).

Alvarez, H.

D. Krueger, L. Caldwell, H. Alvarez, C. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high-spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
[CrossRef]

Amoruso, A.

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of ozone in the wavelength region 339-355 nm at temperatures 220-293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Angstrom, A.

A. Angstrom, “On the atmospheric transmission of sun radiation and on dust in the air,” Georg. Ann. Deutch. 12, 156 (1929), as reported by E. Trakhovsky, E. P. Shettle, “Wavelength scaling of atmospheric aerosol scattering and extinction,” Appl. Opt. 26, 5148–5153 (1987).

Bais, A.

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

Bais, A. F.

A. F. Bais, “Absolute spectral measurements of the direct solar ultraviolet irradiance using a Brewer spectrophotometer,” Appl. Opt. 36, 5199–5204 (1997).
[CrossRef] [PubMed]

A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UVB measurements with the double- and single-monochromator Brewer ozone spectrophotometer,” Geophys. Res. Lett. 23, 833–836 (1996).
[CrossRef]

D. S. Balis, A. F. Bais, A. Papayannis, F. Marenco, V. Santacesaria, C. S. Zerefos, “Comparison of model calculations with spectral solar UV measurements,” in Proceedings of the XVIII Quadriennal Ozone Symposium, G. Visconti, R. Bojkov, eds. (Parco Scientifico e Tecnologico d’Abruzzo, to be published).

Balis, D.

A. Papayannis, D. Balis, “Study of the structure of the lower troposphere over Athens using a backscattering lidar during the MEDCAPHOT-TRACE experiment: measurements over a suburban area,” Urban Environ. (to be published).

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

Balis, D. S.

D. S. Balis, A. F. Bais, A. Papayannis, F. Marenco, V. Santacesaria, C. S. Zerefos, “Comparison of model calculations with spectral solar UV measurements,” in Proceedings of the XVIII Quadriennal Ozone Symposium, G. Visconti, R. Bojkov, eds. (Parco Scientifico e Tecnologico d’Abruzzo, to be published).

Barr, G.

D. Baumgardner, J. E. Dye, G. Barr, K. Barr, K. Kelly, K. R. Chan, “Refractive indices of aerosols in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 23, 749–752 (1996).
[CrossRef]

Barr, K.

D. Baumgardner, J. E. Dye, G. Barr, K. Barr, K. Kelly, K. R. Chan, “Refractive indices of aerosols in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 23, 749–752 (1996).
[CrossRef]

Bartoe, J. F.

M. E. Vanhoosier, J. F. Bartoe, G. E. Brueckner, D. K. Prinz, “Absolute solar spectral irradiance 120nm-400nm (results from the Solar Ultraviolet Spectral Irradiance Monitor-SUSIM-experiment on board Spacelab-2),” Astron. Lett. Commun. 27, 163–168 (1988).

Baumgardner, D.

D. Baumgardner, J. E. Dye, G. Barr, K. Barr, K. Kelly, K. R. Chan, “Refractive indices of aerosols in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 23, 749–752 (1996).
[CrossRef]

Borghesi, A.

A. Borghesi, E. Bussoletti, G. Falcicchia, A. Minafra, “Determination of atmospheric water vapour and turbidity parameters from diurnal infrared hygrometer and turbidimeter data,” Infrared Phys. 22, 149–155 (1982).
[CrossRef]

Brognier, C.

C. Brognier, R. Santer, B. Diallo, M. Herman, J. Lenoble, H. Jaeger, “Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation,” J. Geophys. Res. 97, 20,805–20,823 (1992).
[CrossRef]

Browell, E. V.

Brueckner, G. E.

M. E. Vanhoosier, J. F. Bartoe, G. E. Brueckner, D. K. Prinz, “Absolute solar spectral irradiance 120nm-400nm (results from the Solar Ultraviolet Spectral Irradiance Monitor-SUSIM-experiment on board Spacelab-2),” Astron. Lett. Commun. 27, 163–168 (1988).

Bussoletti, E.

A. Borghesi, E. Bussoletti, G. Falcicchia, A. Minafra, “Determination of atmospheric water vapour and turbidity parameters from diurnal infrared hygrometer and turbidimeter data,” Infrared Phys. 22, 149–155 (1982).
[CrossRef]

Byrne, D.

J. Reagan, J. Spinhirn, D. Byrne, D. Thomson, R. Gena, Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Cacciani, M.

P. Di Girolamo, M. Cacciani, A. Di Sarra, G. Fiocco, D. Fuà, “Lidar observations of the Pinatubo aerosol layer at Thule, Greenland,” Geophys. Res. Lett. 21, 1295–1298 (1994).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of ozone in the wavelength region 339-355 nm at temperatures 220-293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Cachorro, V. E.

V. E. Cachorro, J. L. Casanova, “Punctualizaciones sobre diversos aspectos en la utilizacion de la formula de Angstrom,” Rev. Geofis. 45, 123–130 (1989), as reported in Ref. 40.

Caldwell, L.

D. Krueger, L. Caldwell, H. Alvarez, C. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high-spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
[CrossRef]

Calpini, B.

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

Casanova, J. L.

V. E. Cachorro, J. L. Casanova, “Punctualizaciones sobre diversos aspectos en la utilizacion de la formula de Angstrom,” Rev. Geofis. 45, 123–130 (1989), as reported in Ref. 40.

Chan, K. R.

D. Baumgardner, J. E. Dye, G. Barr, K. Barr, K. Kelly, K. R. Chan, “Refractive indices of aerosols in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 23, 749–752 (1996).
[CrossRef]

Chou, S.-H.

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organised convection in the Planetary Boundary Layer,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, “Lidar measurements of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 71–151.
[CrossRef]

Cooper, D. I.

D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994).
[CrossRef]

Crum, T. D.

T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of entrainment into thermals and mixed layers,” J. Clim. Appl. Meteorol. 26, 774–788 (1987).
[CrossRef]

Di Girolamo, P.

P. Di Girolamo, M. Cacciani, A. Di Sarra, G. Fiocco, D. Fuà, “Lidar observations of the Pinatubo aerosol layer at Thule, Greenland,” Geophys. Res. Lett. 21, 1295–1298 (1994).
[CrossRef]

Di Sarra, A.

P. Di Girolamo, M. Cacciani, A. Di Sarra, G. Fiocco, D. Fuà, “Lidar observations of the Pinatubo aerosol layer at Thule, Greenland,” Geophys. Res. Lett. 21, 1295–1298 (1994).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of ozone in the wavelength region 339-355 nm at temperatures 220-293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Diallo, B.

C. Brognier, R. Santer, B. Diallo, M. Herman, J. Lenoble, H. Jaeger, “Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation,” J. Geophys. Res. 97, 20,805–20,823 (1992).
[CrossRef]

Durieux, E.

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

Dye, J. E.

D. Baumgardner, J. E. Dye, G. Barr, K. Barr, K. Kelly, K. R. Chan, “Refractive indices of aerosols in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 23, 749–752 (1996).
[CrossRef]

Eichinger, W. E.

D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994).
[CrossRef]

Eloranta, E. W.

T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of entrainment into thermals and mixed layers,” J. Clim. Appl. Meteorol. 26, 774–788 (1987).
[CrossRef]

Endlich, R. M.

R. M. Endlich, F. L. Ludwig, E. E. Uthe, “An automated method for determining the mixing depth from lidar observations,” Atmos. Environ. 13, 1051–1056 (1979).
[CrossRef]

Evans, B. T. N.

Falcicchia, G.

A. Borghesi, E. Bussoletti, G. Falcicchia, A. Minafra, “Determination of atmospheric water vapour and turbidity parameters from diurnal infrared hygrometer and turbidimeter data,” Infrared Phys. 22, 149–155 (1982).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” , Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Fernald, G. F.

Fiocco, G.

P. Di Girolamo, M. Cacciani, A. Di Sarra, G. Fiocco, D. Fuà, “Lidar observations of the Pinatubo aerosol layer at Thule, Greenland,” Geophys. Res. Lett. 21, 1295–1298 (1994).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of ozone in the wavelength region 339-355 nm at temperatures 220-293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Fiorani, L.

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

Fuà, D.

P. Di Girolamo, M. Cacciani, A. Di Sarra, G. Fiocco, D. Fuà, “Lidar observations of the Pinatubo aerosol layer at Thule, Greenland,” Geophys. Res. Lett. 21, 1295–1298 (1994).
[CrossRef]

Gena, R.

J. Reagan, J. Spinhirn, D. Byrne, D. Thomson, R. Gena, Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Halldorsson, T.

Hamill, P.

H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid-water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
[CrossRef]

Hansen, J. E.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527 (1974), as reported by H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef]

Hayasaka, T.

Herman, M.

C. Brognier, R. Santer, B. Diallo, M. Herman, J. Lenoble, H. Jaeger, “Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation,” J. Geophys. Res. 97, 20,805–20,823 (1992).
[CrossRef]

Horvath, H.

A. Trier, H. Horvath, “A study of the aerosol of Santiago de Chile. II: mass extinction coefficients, visibilities and Angstrom exponents,” Atmos. Environ. Part A 27, 385–395 (1993).
[CrossRef]

Ismail, S.

Jacquet, L.

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

Jaeger, H.

C. Brognier, R. Santer, B. Diallo, M. Herman, J. Lenoble, H. Jaeger, “Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation,” J. Geophys. Res. 97, 20,805–20,823 (1992).
[CrossRef]

Je, L.

L. Je, M. Je Tai, “Properties of the atmospheric aerosols inverted from optical remote sensing,” Atmos. Environ. Part A 24, 2512–2522 (1990).

Je Tai, M.

L. Je, M. Je Tai, “Properties of the atmospheric aerosols inverted from optical remote sensing,” Atmos. Environ. Part A 24, 2512–2522 (1990).

Kelly, K.

D. Baumgardner, J. E. Dye, G. Barr, K. Barr, K. Kelly, K. R. Chan, “Refractive indices of aerosols in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 23, 749–752 (1996).
[CrossRef]

Klett, J. D.

Kondratyev, K. Y.

K. Y. Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969).

Kovalev, V. A.

Krueger, D.

D. Krueger, L. Caldwell, H. Alvarez, C. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high-spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
[CrossRef]

Langerholc, J.

Lenoble, J.

C. Brognier, R. Santer, B. Diallo, M. Herman, J. Lenoble, H. Jaeger, “Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation,” J. Geophys. Res. 97, 20,805–20,823 (1992).
[CrossRef]

Ludwig, F. L.

R. M. Endlich, F. L. Ludwig, E. E. Uthe, “An automated method for determining the mixing depth from lidar observations,” Atmos. Environ. 13, 1051–1056 (1979).
[CrossRef]

Lyubotseva, Y. S.

Y. S. Lyubotseva, L. G. Yaskovich, “Aerosol absorption within the wavelength interval 0.25 to 0.8 micron,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 922–932 (1982), as reported by H. Horvath, “Atmospheric light absorption-a review,” Atmos. Environ. Part A 27, 293–317 (1993).

Mamane, Y.

J. Reagan, J. Spinhirn, D. Byrne, D. Thomson, R. Gena, Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Marenco, F.

D. S. Balis, A. F. Bais, A. Papayannis, F. Marenco, V. Santacesaria, C. S. Zerefos, “Comparison of model calculations with spectral solar UV measurements,” in Proceedings of the XVIII Quadriennal Ozone Symposium, G. Visconti, R. Bojkov, eds. (Parco Scientifico e Tecnologico d’Abruzzo, to be published).

McClatchey, R. A.

J. E. A. Selby, E. P. Shettle, R. A. McClatchey, “Atmospheric transmittance from 0.25 to 28.5 micron: supplement to lowtran 3b (1976),” U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

McCormick, M. P.

McElroy, C. T.

A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UVB measurements with the double- and single-monochromator Brewer ozone spectrophotometer,” Geophys. Res. Lett. 23, 833–836 (1996).
[CrossRef]

Melfi, S. H.

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organised convection in the Planetary Boundary Layer,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Minafra, A.

A. Borghesi, E. Bussoletti, G. Falcicchia, A. Minafra, “Determination of atmospheric water vapour and turbidity parameters from diurnal infrared hygrometer and turbidimeter data,” Infrared Phys. 22, 149–155 (1982).
[CrossRef]

Molina, L. T.

L. T. Molina, M. J. Molina, “Absolute cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

Molina, M. J.

L. T. Molina, M. J. Molina, “Absolute cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

Ogren, J. A.

J. A. Ogren, P. J. Sheridan, “Vertical and horizontal variability of aerosol single scattering albedo and hemispheric backscatter fraction over the United States” in Nucleation and Atmospheric Aerosols 1996, M. Kulmala, P. E. Wagner, eds. (Elsevier, New York, 1996), pp. 780–783.
[CrossRef]

Palm, S. P.

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organised convection in the Planetary Boundary Layer,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Papayannis, A.

A. Papayannis, D. Balis, “Study of the structure of the lower troposphere over Athens using a backscattering lidar during the MEDCAPHOT-TRACE experiment: measurements over a suburban area,” Urban Environ. (to be published).

D. S. Balis, A. F. Bais, A. Papayannis, F. Marenco, V. Santacesaria, C. S. Zerefos, “Comparison of model calculations with spectral solar UV measurements,” in Proceedings of the XVIII Quadriennal Ozone Symposium, G. Visconti, R. Bojkov, eds. (Parco Scientifico e Tecnologico d’Abruzzo, to be published).

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

Patterson, E. M.

E. M. Patterson, “Optical properties of the crustal aerosol: relation to chemical and physical characteristics,” J. Geophys. Res. 86, 3236–3246 (1981).
[CrossRef]

Prinz, D. K.

M. E. Vanhoosier, J. F. Bartoe, G. E. Brueckner, D. K. Prinz, “Absolute solar spectral irradiance 120nm-400nm (results from the Solar Ultraviolet Spectral Irradiance Monitor-SUSIM-experiment on board Spacelab-2),” Astron. Lett. Commun. 27, 163–168 (1988).

Reagan, J.

J. Reagan, J. Spinhirn, D. Byrne, D. Thomson, R. Gena, Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Russell, P. B.

P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
[PubMed]

R. T. H. Collis, P. B. Russell, “Lidar measurements of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 71–151.
[CrossRef]

Santacesaria, V.

D. S. Balis, A. F. Bais, A. Papayannis, F. Marenco, V. Santacesaria, C. S. Zerefos, “Comparison of model calculations with spectral solar UV measurements,” in Proceedings of the XVIII Quadriennal Ozone Symposium, G. Visconti, R. Bojkov, eds. (Parco Scientifico e Tecnologico d’Abruzzo, to be published).

Santer, R.

C. Brognier, R. Santer, B. Diallo, M. Herman, J. Lenoble, H. Jaeger, “Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation,” J. Geophys. Res. 97, 20,805–20,823 (1992).
[CrossRef]

Sasano, Y.

Selby, J. E. A.

J. E. A. Selby, E. P. Shettle, R. A. McClatchey, “Atmospheric transmittance from 0.25 to 28.5 micron: supplement to lowtran 3b (1976),” U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

She, C.

D. Krueger, L. Caldwell, H. Alvarez, C. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high-spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
[CrossRef]

Sheridan, P. J.

J. A. Ogren, P. J. Sheridan, “Vertical and horizontal variability of aerosol single scattering albedo and hemispheric backscatter fraction over the United States” in Nucleation and Atmospheric Aerosols 1996, M. Kulmala, P. E. Wagner, eds. (Elsevier, New York, 1996), pp. 780–783.
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” , Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

J. E. A. Selby, E. P. Shettle, R. A. McClatchey, “Atmospheric transmittance from 0.25 to 28.5 micron: supplement to lowtran 3b (1976),” U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

Shipley, S. T.

Spinhirn, J.

J. Reagan, J. Spinhirn, D. Byrne, D. Thomson, R. Gena, Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Spinhirne, J. D.

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organised convection in the Planetary Boundary Layer,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Steele, H. M.

H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid-water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
[CrossRef]

Stull, R. B.

T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of entrainment into thermals and mixed layers,” J. Clim. Appl. Meteorol. 26, 774–788 (1987).
[CrossRef]

Swissler, T. J.

Takamura, T.

T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
[CrossRef] [PubMed]

T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
[CrossRef]

Teillet, P. M.

Thomson, D.

J. Reagan, J. Spinhirn, D. Byrne, D. Thomson, R. Gena, Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Travis, L. D.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527 (1974), as reported by H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef]

Trier, A.

A. Trier, H. Horvath, “A study of the aerosol of Santiago de Chile. II: mass extinction coefficients, visibilities and Angstrom exponents,” Atmos. Environ. Part A 27, 385–395 (1993).
[CrossRef]

Twitty, J. T.

J. T. Twitty, J. A. Weinman, “Radiative properties of carbonaceous aerosols,” Appl. Meteorol. 10, 725–731 (1971).
[CrossRef]

Uthe, E. E.

R. M. Endlich, F. L. Ludwig, E. E. Uthe, “An automated method for determining the mixing depth from lidar observations,” Atmos. Environ. 13, 1051–1056 (1979).
[CrossRef]

van der Bergh, H.

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

Vanhoosier, M. E.

M. E. Vanhoosier, J. F. Bartoe, G. E. Brueckner, D. K. Prinz, “Absolute solar spectral irradiance 120nm-400nm (results from the Solar Ultraviolet Spectral Irradiance Monitor-SUSIM-experiment on board Spacelab-2),” Astron. Lett. Commun. 27, 163–168 (1988).

Weinman, J. A.

J. T. Twitty, J. A. Weinman, “Radiative properties of carbonaceous aerosols,” Appl. Meteorol. 10, 725–731 (1971).
[CrossRef]

Woodman, D. P.

Yaskovich, L. G.

Y. S. Lyubotseva, L. G. Yaskovich, “Aerosol absorption within the wavelength interval 0.25 to 0.8 micron,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 922–932 (1982), as reported by H. Horvath, “Atmospheric light absorption-a review,” Atmos. Environ. Part A 27, 293–317 (1993).

Zerefos, C. S.

A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UVB measurements with the double- and single-monochromator Brewer ozone spectrophotometer,” Geophys. Res. Lett. 23, 833–836 (1996).
[CrossRef]

D. S. Balis, A. F. Bais, A. Papayannis, F. Marenco, V. Santacesaria, C. S. Zerefos, “Comparison of model calculations with spectral solar UV measurements,” in Proceedings of the XVIII Quadriennal Ozone Symposium, G. Visconti, R. Bojkov, eds. (Parco Scientifico e Tecnologico d’Abruzzo, to be published).

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

Ziomas, I.

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

Appl. Meteorol.

J. T. Twitty, J. A. Weinman, “Radiative properties of carbonaceous aerosols,” Appl. Meteorol. 10, 725–731 (1971).
[CrossRef]

Appl. Opt.

T. Halldorsson, J. Langerholc, “Geometrical form factors for the LIDAR function,” Appl. Opt. 17, 240–244 (1978).
[CrossRef] [PubMed]

P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
[PubMed]

G. F. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
[CrossRef] [PubMed]

E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
[CrossRef] [PubMed]

B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar,” Appl. Opt. 27, 3299–3306 (1988).
[CrossRef] [PubMed]

P. M. Teillet, “Rayleigh optical depth comparisons from various sources,” Appl. Opt. 29, 1897–1900 (1990).
[CrossRef] [PubMed]

V. A. Kovalev, “Lidar measurements of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios,” Appl. Opt. 32, 6053–6065 (1993).
[CrossRef] [PubMed]

T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
[CrossRef] [PubMed]

A. F. Bais, “Absolute spectral measurements of the direct solar ultraviolet irradiance using a Brewer spectrophotometer,” Appl. Opt. 36, 5199–5204 (1997).
[CrossRef] [PubMed]

V. A. Kovalev, “Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient,” Appl. Opt. 34, 3457–3462 (1995).
[CrossRef] [PubMed]

D. P. Woodman, “Limitations in using atmospheric models for laser transmission estimates,” Appl. Opt. 13, 2193–2195 (1974).
[CrossRef] [PubMed]

Astron. Lett. Commun.

M. E. Vanhoosier, J. F. Bartoe, G. E. Brueckner, D. K. Prinz, “Absolute solar spectral irradiance 120nm-400nm (results from the Solar Ultraviolet Spectral Irradiance Monitor-SUSIM-experiment on board Spacelab-2),” Astron. Lett. Commun. 27, 163–168 (1988).

Atmos. Environ.

R. M. Endlich, F. L. Ludwig, E. E. Uthe, “An automated method for determining the mixing depth from lidar observations,” Atmos. Environ. 13, 1051–1056 (1979).
[CrossRef]

Atmos. Environ. Part A

L. Je, M. Je Tai, “Properties of the atmospheric aerosols inverted from optical remote sensing,” Atmos. Environ. Part A 24, 2512–2522 (1990).

A. Trier, H. Horvath, “A study of the aerosol of Santiago de Chile. II: mass extinction coefficients, visibilities and Angstrom exponents,” Atmos. Environ. Part A 27, 385–395 (1993).
[CrossRef]

Geophys. Res. Lett.

P. Di Girolamo, M. Cacciani, A. Di Sarra, G. Fiocco, D. Fuà, “Lidar observations of the Pinatubo aerosol layer at Thule, Greenland,” Geophys. Res. Lett. 21, 1295–1298 (1994).
[CrossRef]

A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UVB measurements with the double- and single-monochromator Brewer ozone spectrophotometer,” Geophys. Res. Lett. 23, 833–836 (1996).
[CrossRef]

D. Baumgardner, J. E. Dye, G. Barr, K. Barr, K. Kelly, K. R. Chan, “Refractive indices of aerosols in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 23, 749–752 (1996).
[CrossRef]

Georg. Ann. Deutch.

A. Angstrom, “On the atmospheric transmission of sun radiation and on dust in the air,” Georg. Ann. Deutch. 12, 156 (1929), as reported by E. Trakhovsky, E. P. Shettle, “Wavelength scaling of atmospheric aerosol scattering and extinction,” Appl. Opt. 26, 5148–5153 (1987).

Infrared Phys.

A. Borghesi, E. Bussoletti, G. Falcicchia, A. Minafra, “Determination of atmospheric water vapour and turbidity parameters from diurnal infrared hygrometer and turbidimeter data,” Infrared Phys. 22, 149–155 (1982).
[CrossRef]

Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana

Y. S. Lyubotseva, L. G. Yaskovich, “Aerosol absorption within the wavelength interval 0.25 to 0.8 micron,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 922–932 (1982), as reported by H. Horvath, “Atmospheric light absorption-a review,” Atmos. Environ. Part A 27, 293–317 (1993).

J. Aerosol Sci.

H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid-water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
[CrossRef]

J. Appl. Meteorol.

J. Reagan, J. Spinhirn, D. Byrne, D. Thomson, R. Gena, Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

J. Atmos. Oceanic Technol.

D. Krueger, L. Caldwell, H. Alvarez, C. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high-spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
[CrossRef]

J. Clim. Appl. Meteorol.

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organised convection in the Planetary Boundary Layer,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of entrainment into thermals and mixed layers,” J. Clim. Appl. Meteorol. 26, 774–788 (1987).
[CrossRef]

J. Geophys. Res.

D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994).
[CrossRef]

C. Brognier, R. Santer, B. Diallo, M. Herman, J. Lenoble, H. Jaeger, “Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation,” J. Geophys. Res. 97, 20,805–20,823 (1992).
[CrossRef]

L. T. Molina, M. J. Molina, “Absolute cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of ozone in the wavelength region 339-355 nm at temperatures 220-293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

E. M. Patterson, “Optical properties of the crustal aerosol: relation to chemical and physical characteristics,” J. Geophys. Res. 86, 3236–3246 (1981).
[CrossRef]

Opt. Quantum Electron.

T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
[CrossRef]

Rev. Geofis.

V. E. Cachorro, J. L. Casanova, “Punctualizaciones sobre diversos aspectos en la utilizacion de la formula de Angstrom,” Rev. Geofis. 45, 123–130 (1989), as reported in Ref. 40.

Space Sci. Rev.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527 (1974), as reported by H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef]

Other

K. Y. Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969).

J. A. Ogren, P. J. Sheridan, “Vertical and horizontal variability of aerosol single scattering albedo and hemispheric backscatter fraction over the United States” in Nucleation and Atmospheric Aerosols 1996, M. Kulmala, P. E. Wagner, eds. (Elsevier, New York, 1996), pp. 780–783.
[CrossRef]

J. E. A. Selby, E. P. Shettle, R. A. McClatchey, “Atmospheric transmittance from 0.25 to 28.5 micron: supplement to lowtran 3b (1976),” U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” , Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

A. Papayannis, D. Balis, “Study of the structure of the lower troposphere over Athens using a backscattering lidar during the MEDCAPHOT-TRACE experiment: measurements over a suburban area,” Urban Environ. (to be published).

A. Papayannis, D. Balis, A. Bais, H. van der Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jacquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Urban Environ. (to be published).

D. S. Balis, A. F. Bais, A. Papayannis, F. Marenco, V. Santacesaria, C. S. Zerefos, “Comparison of model calculations with spectral solar UV measurements,” in Proceedings of the XVIII Quadriennal Ozone Symposium, G. Visconti, R. Bojkov, eds. (Parco Scientifico e Tecnologico d’Abruzzo, to be published).

R. T. H. Collis, P. B. Russell, “Lidar measurements of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 71–151.
[CrossRef]

U.S. Standard Atmosphere (National Oceanic and Atmospheric Administration, NASA, U.S. Air Force, Washington, D. C., October1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Total optical depth of the atmosphere as a function of wavelength, measured by the Brewer spectrophotometer. Also shown are the contributions from Rayleigh scattering, ozone, and aerosols. For this measurement the solar zenith angle was 66° and the columnar amount of ozone was 312 D.U.

Fig. 2
Fig. 2

Center solid curve: aerosol optical depth as a function of wavelength. The dashed curve represents a least squares fit with a λ-m dependence. The other solid curves show the amplitude of the experimental error (±ΔτP).

Fig. 3
Fig. 3

Mean daily values of optical depth as derived (solid curve with filled circles) by the Brewer spectrophotometer and (dashed curve with triangles) by lidar with the Fernald–Klett method. The solid and dashed curves without circles or triangles show the corresponding ±1 standard deviation, which is a measure of the variability of the measured quantity during the day.

Fig. 4
Fig. 4

Mean daily values of the Ångström coefficient, as derived by Brewer observations. The error bars show ±1 standard deviation.

Fig. 5
Fig. 5

Optical depths retrieved (solid curves with dots) by the Brewer spectrophotometer and (dashed curves) by lidar with the Fernald–Klett method. The other two solid curves show ±ΔτP (experimental error) of the Brewer optical depths.

Fig. 6
Fig. 6

Comparison of the optical depths retrieved simultaneously with the Brewer spectrophotometer in the 50-m to infinity altitude range (τB) and with the lidar in the 0.6–5-km altitude range (τL). Also shown are (solid line) a best-fit line and (dashed line) the τB = τL line.

Fig. 7
Fig. 7

Aerosol backscattering ratio, R = (βR + βP)/βR, as measured at 532 nm by lidar in Firenze, Italy, on June 11, 1996. The signature of a tropospheric cloud is visible at ∼12 km in height. The stratospheric aerosol layer is confined between 15 and 30 km, and its optical depth was found to be less than 0.002 at 532 nm. Courtesy of IROE.

Fig. 8
Fig. 8

Same as Fig. 6, but the optical depths measured by Brewer spectrophotometer have been corrected to remove the contribution due to the 50–600-m altitude range.

Fig. 9
Fig. 9

Profiles of aerosol backscattering (β) and extinction (α) coefficients at 355 nm, derived with the iterative method (solid curves). Also shown is the Fernald–Klett solution (dashed curves). These curves were obtained for the daily averaged lidar profile of 13 June 1996.

Fig. 10
Fig. 10

Mean daily values of the backscatter-to-extinction ratio. The error bars denote the magnitude of the standard deviation. The dashed line indicates the maritime aerosol model used for an a priori input to the Fernald–Klett solution (C = 0.05).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Nz=KLβRz+βPzz-zL2×exp-2zLzαRz+αPzdz,
βPz/αPz=C.
Nz=KL*βRz+βPzz-zL2×exp-2z0zαRz+αPzdz.
Mz=KL*βRzz-zL2×exp-2z0zαRz+αPzdz.
Nzm=KL*βmzm-zL2×exp-2z0zmαRzdz-2τ*.
αPz=αP=τ*zm-z0,
βPz=βRzNzMz-1,
IP=z0zmβPzdz.
C=IP/τ*.
αPz=βPz/C.
Cn-Cn-1Cn-1<ε.
τPzB, , λ=cos θ lnI0λIλ-pp0τRλ-DO3kO3λln 101000,
τRλ=0.09364λλ0-41+0.0374λλ0-2+0.00142λλ0-4,
ΔτP2=cos2 θΔI0I02+ΔII2+ΔDO3DO3τO32,
τPλ=τ0λ/λ0-m,
τB=a+bτL

Metrics