Abstract

We describe a computer simulation of atmospheric and target effects on the accuracy of range measurements using pulsed laser radars with p-i-n or avalanche photodiodes for direct detection. The computer simulation produces simulated images as a function of a wide variety of atmospheric, target, and sensor parameters for laser radars with range accuracies smaller than the pulse width. The simulation allows arbitrary target geometries and simulates speckle, turbulence, and near-field and far-field effects. We compare simulation results with actual range error data collected in field tests.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Shapiro, B. Capron, R. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292–3313 (1981).
    [Crossref] [PubMed]
  2. G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. Dainty, ed. (Springer-Verlag, New York, 1985).
  3. J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. Dainty, ed. (Springer-Verlag, New York, 1985).
  4. G. Parry, “Measurement of atmospheric turbulence induced intensity fluctuations in a laser beam,” Opt. Acta 28, 715–728 (1981).
    [Crossref]
  5. J. Churnside, S. Clifford, “Log-normal Rician probability-density function of optical scintillations in the turbulent atmosphere,” J. Opt. Soc. Am. A 4, 1923–1930 (1987).
    [Crossref]
  6. R. DeWitt, “The distribution of irradiance fluctuations that result from atmospheric turbulence,” , 1981 (Pacific Sierra Research Corporation, 1456 Clverfield Blvd., Santa Monica, Calif. 90404).
  7. R. Lutomirski, R. Huschke, W. Meecham, H. Yura, “Degradation of laser systems by atmospheric turbulence,” , 1973, (Defense Advanced Research Projects Agency, 3701 North Fairfax Drive, Arlington, Va. 22203-1714).
  8. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2 (Academic, New York, 1978).
  9. R. Measures, Laser Remote Sensing, Fundamentals and Applications (Wiley, New York, 1984).
  10. J. Goodman, Statistical Optics (Wiley, New York, 1985).
  11. R. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1693 (1975).
    [Crossref]
  12. P. Webb, R. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

1987 (1)

1981 (2)

J. Shapiro, B. Capron, R. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292–3313 (1981).
[Crossref] [PubMed]

G. Parry, “Measurement of atmospheric turbulence induced intensity fluctuations in a laser beam,” Opt. Acta 28, 715–728 (1981).
[Crossref]

1975 (1)

R. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1693 (1975).
[Crossref]

1974 (1)

P. Webb, R. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Capron, B.

Churnside, J.

Clifford, S.

Conradi, J.

P. Webb, R. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

DeWitt, R.

R. DeWitt, “The distribution of irradiance fluctuations that result from atmospheric turbulence,” , 1981 (Pacific Sierra Research Corporation, 1456 Clverfield Blvd., Santa Monica, Calif. 90404).

Fante, R.

R. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1693 (1975).
[Crossref]

Goodman, J.

J. Goodman, Statistical Optics (Wiley, New York, 1985).

J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. Dainty, ed. (Springer-Verlag, New York, 1985).

Harney, R.

Huschke, R.

R. Lutomirski, R. Huschke, W. Meecham, H. Yura, “Degradation of laser systems by atmospheric turbulence,” , 1973, (Defense Advanced Research Projects Agency, 3701 North Fairfax Drive, Arlington, Va. 22203-1714).

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2 (Academic, New York, 1978).

Lutomirski, R.

R. Lutomirski, R. Huschke, W. Meecham, H. Yura, “Degradation of laser systems by atmospheric turbulence,” , 1973, (Defense Advanced Research Projects Agency, 3701 North Fairfax Drive, Arlington, Va. 22203-1714).

McIntyre, R.

P. Webb, R. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Measures, R.

R. Measures, Laser Remote Sensing, Fundamentals and Applications (Wiley, New York, 1984).

Meecham, W.

R. Lutomirski, R. Huschke, W. Meecham, H. Yura, “Degradation of laser systems by atmospheric turbulence,” , 1973, (Defense Advanced Research Projects Agency, 3701 North Fairfax Drive, Arlington, Va. 22203-1714).

Parry, G.

G. Parry, “Measurement of atmospheric turbulence induced intensity fluctuations in a laser beam,” Opt. Acta 28, 715–728 (1981).
[Crossref]

G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. Dainty, ed. (Springer-Verlag, New York, 1985).

Shapiro, J.

Webb, P.

P. Webb, R. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Yura, H.

R. Lutomirski, R. Huschke, W. Meecham, H. Yura, “Degradation of laser systems by atmospheric turbulence,” , 1973, (Defense Advanced Research Projects Agency, 3701 North Fairfax Drive, Arlington, Va. 22203-1714).

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Opt. Acta (1)

G. Parry, “Measurement of atmospheric turbulence induced intensity fluctuations in a laser beam,” Opt. Acta 28, 715–728 (1981).
[Crossref]

Proc. IEEE (1)

R. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1693 (1975).
[Crossref]

RCA Rev. (1)

P. Webb, R. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Other (7)

G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. Dainty, ed. (Springer-Verlag, New York, 1985).

J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. Dainty, ed. (Springer-Verlag, New York, 1985).

R. DeWitt, “The distribution of irradiance fluctuations that result from atmospheric turbulence,” , 1981 (Pacific Sierra Research Corporation, 1456 Clverfield Blvd., Santa Monica, Calif. 90404).

R. Lutomirski, R. Huschke, W. Meecham, H. Yura, “Degradation of laser systems by atmospheric turbulence,” , 1973, (Defense Advanced Research Projects Agency, 3701 North Fairfax Drive, Arlington, Va. 22203-1714).

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2 (Academic, New York, 1978).

R. Measures, Laser Remote Sensing, Fundamentals and Applications (Wiley, New York, 1984).

J. Goodman, Statistical Optics (Wiley, New York, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulated laser pulse shape.

Fig. 2
Fig. 2

Saturation of intensity fluctuation.

Fig. 3
Fig. 3

Undistorted pulse shape and noisy return signal after matched filtering.

Fig. 4
Fig. 4

Input range image and resulting ladar image. Black pixels indicate dropouts and white pixels indicate anomalies.

Fig. 5
Fig. 5

Simulated range error versus range. The x’s represent real data points.

Fig. 6
Fig. 6

Simulated range error versus aperture size. Laser power was varied to keep the average return power constant. The speckle correlation cell diameter was 0.015 m.

Tables (2)

Tables Icon

Table 1 Portion of Total Pulse Energy in Cross-Range Components with a Gaussian Irradiance Profile [G(x, y)]

Tables Icon

Table 2 Sensor Description

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

Ux, y, z=PsGx, yVz,
PR=Pc exp-2αRd24R2ρ,
Pspeckle=SPR,
ProbSλ=s=exp-s/λ,
σI2=γtargetσIpoint,
σIpoint2=1.23cn2k7/62R11/6,
γtarget=ρlreff7/3
reff=minrtgt, rbeamR, rfovR
ρl=Rk1+Rkρ02,
ρ0=ρ0p×1-Rfxmt2+RzB21+δ2311+δ21-133Rfxmt+113Rfxmt2+13RzB21+δ241+δ21/2,
ρ0s=0.5k2cn2R-3/5,
ρ0p=1.46k2cn2R-3/5,
zB=krbo21ρ0s2+14rbo2-1/2,
fxmt=-rb0tanθb1/2-tanλ2πrb0,
δ=2rb0ρ0p.
Pturbulence=expGa, bPspeckle,
b=logσ2μe2+11/2,
a=logμ-b22.
lspeckle=λRAo,
Urz=x,yPturbulencex, yVz-2T(x, y,
ξann=2πFgcRπrb2R0rbRξaR, rrdr,
ξaR, r=ΛrD, raperfrcvrRrfrcvrR-ΛrDrobsfrcvrRrfRπraperfrcvrR2,
Λa, b, cb2Ψa, b, c+a2Ψb, a, c-ac sinΨb, a, c,
Ψb, a, carccosc2+b2-a22bc,
FgcR=minAdAblurR, 1,
AblurR=πrblurR2
rblurR=rgeomR+rturb+diffR.
rturb+diff=rdiff1+rdiff2rturb-1/2,
rdiff=1.22λfrcvrQdrcv,
rturb=2πνtrb,
13.443/5r0λfrcvr=ν1-αλfrcvrνdrcv1/33/5,
r0=2.11.46k2cn2R-3/5
rgeom=frcvrRrbR,
rbR=R2k2rb02+rb021-Rfxmt2+4R2k2ρl21/2
rbR=R2k2rb02+rb021-Rfxmt2+4R2k2ρl21-0.62ρl2rb01/36/51/2,
fxmt=-rb0tanθb1/2-tanλ2πrb0
NEPdetector=2ecBIds+Idb+Ib+IsM2F1/2,
PB=ρhsunTrAr sinθfov22Δλ,
NEPamp=4kTBNRL2,
RL=12πBC,
NEPtotal=NEPamp2+NEPdetector2.

Metrics