Abstract

We developed a simple system of tunable fiber–film coupler using a linearly tapered thin-film planar waveguide (PWG) evanescently coupled by a single-mode distributed fiber half-coupler. We investigate the characteristics of the coupler theoretically and experimentally taking into consideration the refractive index (nf) of nonuniform films, the magnitude of nonuniformity (m) of the films, and the source wavelength (λ). The thickness variation of the nonuniform film is along the direction of propagation of optical power. Tapered and plano–concave thin films of a mix of oils as well as a plano–concave poly(methyl methacrylate) film were fabricated to serve as nonuniform PWG’s. Similar to single-mode fiber with a uniform thickness PWG coupler, such a coupler also provides light modulation with a change of nf. However, position shifting of a half-coupler in a tapered PWG structure along the direction of propagation exhibits the variation of fiber throughput power. This action serves as a simple system for a tunable fiber–film coupler. Wavelength-dependent throughput fiber power for such a coupler also behaves as a filter. The center wavelength can be controlled by shifting the position of the half-coupler. A coupling fiber as a half-coupler can be used for efficient coupling. We performed a theoretical analysis of the structure using Marcuse’s model and observed good agreement with the experimental results.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Blue, I. S. Mauchline, G. Stewart, “Applications of sol-gel films in optical waveguide filters,” Electron. Lett. 30, 402–403 (1994).
    [CrossRef]
  2. Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
    [CrossRef]
  3. M. Zhang, E. Garmire, “Single-mode fiber–film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
    [CrossRef]
  4. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
    [CrossRef]
  5. A. Tz. Andreev, K. P. Panajotov, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” Photon. Technol. Lett. 6, 1238–1240 (1994).
    [CrossRef]
  6. A. K. Das, A. K. Mondal, M. K. Pandit, “Effect of liquid on partially removed cladding SM fiber and its application to sensors,” in International Conference on Optical Fibre Sensors in China, B. Culshaw, Y. Liao, eds. Proc. SPIE1572, 572–580 (1991).
    [CrossRef]
  7. P. K. Tien, R. J. Martin, “Experiments on light waves in a thin tapered film and a new light-wave coupler,” Appl. Phys. Lett. 18, 398–401 (1971).
    [CrossRef]
  8. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
    [CrossRef]
  9. C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, “Nonlinear distributed waveguide couplers,” J. Opt. Soc. Am. A 2, 590–594 (1985).
    [CrossRef]
  10. D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, New York, 1982).
  11. A. K. Das, A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin-film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
    [CrossRef] [PubMed]
  12. D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
    [CrossRef]
  13. A. W. Snyder, J. D. Love, Optical Waveguide Theory, 1st ed. (Chapman & Hall, New York, 1983).
  14. A. Tz. Andreev, K. P. Panajatov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
    [CrossRef]
  15. A. K. Das, M. A. Mondal, A. Mukherjee, A. K. Mondal, “Automatic determination of remaining cladding thickness of a single-mode fiber half-coupler,” Opt. Lett. 19, 384–386 (1994).
    [PubMed]
  16. R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mahapatra, “Temperature dependence of index of refraction of polymeric waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
    [CrossRef]
  17. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, 746–754 (1982).
    [CrossRef]

1994 (4)

R. Blue, I. S. Mauchline, G. Stewart, “Applications of sol-gel films in optical waveguide filters,” Electron. Lett. 30, 402–403 (1994).
[CrossRef]

A. Tz. Andreev, K. P. Panajotov, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” Photon. Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

A. K. Das, A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin-film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
[CrossRef] [PubMed]

A. K. Das, M. A. Mondal, A. Mukherjee, A. K. Mondal, “Automatic determination of remaining cladding thickness of a single-mode fiber half-coupler,” Opt. Lett. 19, 384–386 (1994).
[PubMed]

1993 (1)

A. Tz. Andreev, K. P. Panajatov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

1992 (1)

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mahapatra, “Temperature dependence of index of refraction of polymeric waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

1991 (1)

Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
[CrossRef]

1989 (2)

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

1987 (1)

M. Zhang, E. Garmire, “Single-mode fiber–film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

1985 (1)

1982 (1)

J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

1976 (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

1971 (1)

P. K. Tien, R. J. Martin, “Experiments on light waves in a thin tapered film and a new light-wave coupler,” Appl. Phys. Lett. 18, 398–401 (1971).
[CrossRef]

Andreev, A. Tz.

A. Tz. Andreev, K. P. Panajotov, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” Photon. Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

A. Tz. Andreev, K. P. Panajatov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

Blue, R.

R. Blue, I. S. Mauchline, G. Stewart, “Applications of sol-gel films in optical waveguide filters,” Electron. Lett. 30, 402–403 (1994).
[CrossRef]

Booth, B. L.

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

Cai, Y.

Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
[CrossRef]

Das, A. K.

A. K. Das, M. A. Mondal, A. Mukherjee, A. K. Mondal, “Automatic determination of remaining cladding thickness of a single-mode fiber half-coupler,” Opt. Lett. 19, 384–386 (1994).
[PubMed]

A. K. Das, A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin-film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
[CrossRef] [PubMed]

A. K. Das, A. K. Mondal, M. K. Pandit, “Effect of liquid on partially removed cladding SM fiber and its application to sensors,” in International Conference on Optical Fibre Sensors in China, B. Culshaw, Y. Liao, eds. Proc. SPIE1572, 572–580 (1991).
[CrossRef]

Digonnet, J. F.

J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

Ganguly, A. K.

Garmire, E.

M. Zhang, E. Garmire, “Single-mode fiber–film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

Lee, T. C.

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mahapatra, “Temperature dependence of index of refraction of polymeric waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Liao, C.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory, 1st ed. (Chapman & Hall, New York, 1983).

Mahapatra, S. K.

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mahapatra, “Temperature dependence of index of refraction of polymeric waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Marcuse, D.

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, New York, 1982).

Martin, R. J.

P. K. Tien, R. J. Martin, “Experiments on light waves in a thin tapered film and a new light-wave coupler,” Appl. Phys. Lett. 18, 398–401 (1971).
[CrossRef]

Mauchline, I. S.

R. Blue, I. S. Mauchline, G. Stewart, “Applications of sol-gel films in optical waveguide filters,” Electron. Lett. 30, 402–403 (1994).
[CrossRef]

Mizumoto, T.

Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
[CrossRef]

Mondal, A. K.

A. K. Das, M. A. Mondal, A. Mukherjee, A. K. Mondal, “Automatic determination of remaining cladding thickness of a single-mode fiber half-coupler,” Opt. Lett. 19, 384–386 (1994).
[PubMed]

A. K. Das, A. K. Mondal, M. K. Pandit, “Effect of liquid on partially removed cladding SM fiber and its application to sensors,” in International Conference on Optical Fibre Sensors in China, B. Culshaw, Y. Liao, eds. Proc. SPIE1572, 572–580 (1991).
[CrossRef]

Mondal, M. A.

Moshrefzadeh, R. S.

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mahapatra, “Temperature dependence of index of refraction of polymeric waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Mukherjee, A.

Naito, Y.

Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
[CrossRef]

Panajatov, K. P.

A. Tz. Andreev, K. P. Panajatov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

Panajotov, K. P.

A. Tz. Andreev, K. P. Panajotov, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” Photon. Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

Pandit, M. K.

A. K. Das, A. K. Mondal, M. K. Pandit, “Effect of liquid on partially removed cladding SM fiber and its application to sensors,” in International Conference on Optical Fibre Sensors in China, B. Culshaw, Y. Liao, eds. Proc. SPIE1572, 572–580 (1991).
[CrossRef]

Radcliffe, M. D.

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mahapatra, “Temperature dependence of index of refraction of polymeric waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Seaton, C. T.

Shaw, H. J.

J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

Shoemaker, R. L.

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory, 1st ed. (Chapman & Hall, New York, 1983).

Stegeman, G. I.

Stewart, G.

R. Blue, I. S. Mauchline, G. Stewart, “Applications of sol-gel films in optical waveguide filters,” Electron. Lett. 30, 402–403 (1994).
[CrossRef]

Tien, P. K.

P. K. Tien, R. J. Martin, “Experiments on light waves in a thin tapered film and a new light-wave coupler,” Appl. Phys. Lett. 18, 398–401 (1971).
[CrossRef]

Valera, J. D.

Zhang, M.

M. Zhang, E. Garmire, “Single-mode fiber–film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

P. K. Tien, R. J. Martin, “Experiments on light waves in a thin tapered film and a new light-wave coupler,” Appl. Phys. Lett. 18, 398–401 (1971).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

Electron. Lett. (1)

R. Blue, I. S. Mauchline, G. Stewart, “Applications of sol-gel films in optical waveguide filters,” Electron. Lett. 30, 402–403 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

J. Lightwave Technol. (6)

R. S. Moshrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mahapatra, “Temperature dependence of index of refraction of polymeric waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

A. Tz. Andreev, K. P. Panajatov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
[CrossRef]

M. Zhang, E. Garmire, “Single-mode fiber–film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Photon. Technol. Lett. (1)

A. Tz. Andreev, K. P. Panajotov, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” Photon. Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

Other (3)

A. K. Das, A. K. Mondal, M. K. Pandit, “Effect of liquid on partially removed cladding SM fiber and its application to sensors,” in International Conference on Optical Fibre Sensors in China, B. Culshaw, Y. Liao, eds. Proc. SPIE1572, 572–580 (1991).
[CrossRef]

D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, New York, 1982).

A. W. Snyder, J. D. Love, Optical Waveguide Theory, 1st ed. (Chapman & Hall, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Longitudinal view of (a) the distributed fiber-to-linearly tapered PWG coupler and (b) the distributed fiber-to-plano–concave PWG coupler.

Fig. 2
Fig. 2

Theoretical curve and experimental points of the remaining cladding thickness h0 of the coupling fiber.

Fig. 3
Fig. 3

Theoretical variation of throughput power PT versus the refractive index nf of a uniform thickness PWG: curve a, m = 0 and tapered PWG’s for the slopes; curve b, m = 59.5 × 10-6; curve c, m = 99.2 × 10-6 of the fiber–film coupler with d0 = 1.6 µm and Li ∼ 5000 µm plus the experimental points.

Fig. 4
Fig. 4

Theoretical variation of throughput power PT versus refractive index nf of a tapered PWG for m = 59.5 × 10-6 of the fiber–film coupler with d0 = 1.6 µm and Li ∼ 5000 µm for position shifts of Δz = 0 µm (curve a) and Δz = 480 µm (curve b) plus the experimental points.

Fig. 5
Fig. 5

Theoretical variation of throughput power PT versus refractive index nf of an infinite length (L ∼ 1.5 cm) tapered PWG with m = 59.5 × 10-6 of the fiber–film coupler for different position shifts of Δz = 0 µm (d0 = 1.6 µm) (curve a); Δz = -840 µm (d0 = 1.65 µm) (curve b); Δz = 840 µm (d0 = 1.55 µm) (curve c) plus the experimental points.

Fig. 6
Fig. 6

Theoretical variation of throughput power PT versus refractive index nf of a uniform thickness PWG m = 0 (curve a) and plano–concave PWG’s for slopes of m = 81.3 × 10-6 (curve b) and m = 162.6 × 10 -6 (curve c) of the fiber–film coupler with d0 = 2.2 µm and Li ∼ 4900 µm plus the experimental points.

Fig. 7
Fig. 7

Theoretical variation of fiber throughput power PT versus λ for an infinite length (L ∼ 1.5 cm) uniform thickness PWG with m = 0, d0 = 1.7 µm, ∇z = 0 µm (curve a); and tapered PWG’s with m = 19.8 × 10-6, d0 = 1.7 µm, ∇z = 0 µm (curve b); m = 19.8 × 10-6, d0 = 1.725 µm, ∇z = -1260 µm (curve c) plus the experimental points.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

m=d2-d1L,
m2d0-dmidLi,
Ψ=a0zF0 exp-jβf0z+ν=0NsbνzSν exp-jβsνz,
da0dzi=-jQf00a0|i-jν=0NsKf0νbν expjβf0-βsνzi,
dbμdzi=-jKsμ0a0 expjβsμ-βf0zi-jν=0NsQsμνbν expjβsμ-βsνzi,
kfJ1kfaJ0kfa=γfK1γfaK0γfa,
kf2=nf2k02-βf02,
γf2=βf02-ncl2k02,
tanksd/2|i=γs/ks|i.
βs2|i=k0nf2-ks2i,
βsν2|i=βs2|i-ν+0.52π/D2|i.
d|i=d0+iΔd,
d|i=dmid+iΔd,

Metrics