Abstract

We present a computer model for accurately predicting absorption profiles for molecular iodine cells over the tuning range of frequency-doubled Nd:YAG lasers. The model is compared with experimental data for a number of different cell conditions. This model is intended for use in the design and optimization of absorption filters and for data analysis in applications in which the accuracy of the measurement is related closely to the accuracy with which the filter profile is known.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Miles, W. R. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high speed flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
    [CrossRef]
  2. J. N. Forkey, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34, 442–448 (1996).
    [CrossRef]
  3. G. S. Elliott, M. Samimy, S. A. Arnette, “A molecular filter based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).
  4. J. A. Shirley, M. Winter, “Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering,” in 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1993), paper 93-0513.
  5. H. Komine, S. J. Brosnan, A. B. Litton, E. A. Stappaerts, “Real-time, Doppler global velocimetry,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1991), paper 91-0337.
  6. D. Hoffman, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
    [CrossRef] [PubMed]
  7. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
    [CrossRef] [PubMed]
  8. G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular I2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19, 138–141 (1971).
    [CrossRef]
  9. A. Arie, R. L. Byer, “Frequency stabilization of the 1064-nm Nd:YAG lasers to Doppler-broadened lines of iodine,” Appl. Opt. 32, 7382–7386 (1993).
    [CrossRef] [PubMed]
  10. J. A. Harrison, M. Zahedi, J. W. Nibler, “Use of seeded Nd:YAG lasers for high-resolution spectroscopy,” Opt. Lett. 18, 149–151 (1993).
    [CrossRef] [PubMed]
  11. fortran source code available over the internet. Contact Joseph N. Forkey (joe@hepcat.princeton.edu) or Richard B. Miles (miles@hepcat.princeton.edu) for details.
  12. J. Tellinghuisen, “Transition strengths in the visible-infrared absorption spectrum of I2,” J. Chem. Phys. 76, 4736–4744 (1982).
    [CrossRef]
  13. S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule d’Iode, 14800–20000 cm-1, complement (Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II 91405 Orsay, France, 1986).
  14. S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B-X) system,” J. Phys. (Paris) 46, 867–881 (1985).
    [CrossRef]
  15. M. Kroll, K. K. Innes, “Molecular electronic spectroscopy by Fabry-Perot interferometry. Effect of nuclear quadrupole interactions on the line widths of the B3Π0+-X1Σg+ transition of the I2 molecule,” J. Mol. Spectrosc. 36, 295–309 (1970).
    [CrossRef]
  16. L. A. Hackel, K. H. Casleton, S. G. Kukolich, S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interactions in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
    [CrossRef]
  17. M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 6–20 (1972).
    [CrossRef]
  18. M. Gläser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 54, 335–342 (1985).
    [CrossRef]
  19. J. I. Steinfeld, Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy (MIT, Cambridge, Mass., 1981).
  20. J. Tellinghuisen, “Intensity factors for the I2 B-X band system,” J. Quan. Spectrosc. Radiat. Transfer 19, 149–161 (1978).
    [CrossRef]
  21. S. Gerstenkorn, P. Luc, Identification des Transitions du Systemes, (B-X) de la Molecule d’Iode et Facteurs de Franck-Condon, 14000–15600 cm-1 (Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II 91405 Orsay, France, 1986).
  22. L. Brewer, J. Tellinghuisen, “Quantum yield for unimolecular dissociation of I2 in visible absorption,” J. Chem. Phys. 56, 3929–3938 (1972).
    [CrossRef]
  23. B. Hiller, R. K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990).
    [CrossRef]
  24. D. Fletcher, NASA Ames Research Center, MS 229/1, Moffett Field, Calif. 94035-1000 (personal communication, 1991).
  25. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1996).
  26. M. Frenkel, N. M. Gadalla, K. N. Marsh, R. C. Wilhoit, eds., Thermodynamics Research Center, (TRC) Thermodynamic Tables—Non-Hydrocarbons (Thermodynamics Research Center, The Texas Engineering Experiment Station, The Texas A&M University System, College Station, Texas, 1975), p. ka-190.

1996 (2)

J. N. Forkey, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34, 442–448 (1996).
[CrossRef]

D. Hoffman, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
[CrossRef] [PubMed]

1994 (2)

P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
[CrossRef] [PubMed]

G. S. Elliott, M. Samimy, S. A. Arnette, “A molecular filter based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).

1993 (2)

1990 (2)

R. B. Miles, W. R. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high speed flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

B. Hiller, R. K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990).
[CrossRef]

1985 (2)

M. Gläser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 54, 335–342 (1985).
[CrossRef]

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B-X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

1982 (1)

J. Tellinghuisen, “Transition strengths in the visible-infrared absorption spectrum of I2,” J. Chem. Phys. 76, 4736–4744 (1982).
[CrossRef]

1978 (1)

J. Tellinghuisen, “Intensity factors for the I2 B-X band system,” J. Quan. Spectrosc. Radiat. Transfer 19, 149–161 (1978).
[CrossRef]

1975 (1)

L. A. Hackel, K. H. Casleton, S. G. Kukolich, S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interactions in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

1972 (2)

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 6–20 (1972).
[CrossRef]

L. Brewer, J. Tellinghuisen, “Quantum yield for unimolecular dissociation of I2 in visible absorption,” J. Chem. Phys. 56, 3929–3938 (1972).
[CrossRef]

1971 (1)

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular I2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19, 138–141 (1971).
[CrossRef]

1970 (1)

M. Kroll, K. K. Innes, “Molecular electronic spectroscopy by Fabry-Perot interferometry. Effect of nuclear quadrupole interactions on the line widths of the B3Π0+-X1Σg+ transition of the I2 molecule,” J. Mol. Spectrosc. 36, 295–309 (1970).
[CrossRef]

Arie, A.

Arnette, S. A.

G. S. Elliott, M. Samimy, S. A. Arnette, “A molecular filter based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).

Brewer, L.

L. Brewer, J. Tellinghuisen, “Quantum yield for unimolecular dissociation of I2 in visible absorption,” J. Chem. Phys. 56, 3929–3938 (1972).
[CrossRef]

Brosnan, S. J.

H. Komine, S. J. Brosnan, A. B. Litton, E. A. Stappaerts, “Real-time, Doppler global velocimetry,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1991), paper 91-0337.

Byer, R. L.

Casleton, K. H.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interactions in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

Chase, L.

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular I2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19, 138–141 (1971).
[CrossRef]

Davis, J. L.

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular I2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19, 138–141 (1971).
[CrossRef]

Devlin, G. E.

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular I2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19, 138–141 (1971).
[CrossRef]

Elliott, G. S.

G. S. Elliott, M. Samimy, S. A. Arnette, “A molecular filter based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).

Eloranta, E. W.

Ezekiel, S.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interactions in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

Fletcher, D.

D. Fletcher, NASA Ames Research Center, MS 229/1, Moffett Field, Calif. 94035-1000 (personal communication, 1991).

Forkey, J. N.

J. N. Forkey, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34, 442–448 (1996).
[CrossRef]

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1996).

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B-X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule d’Iode, 14800–20000 cm-1, complement (Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II 91405 Orsay, France, 1986).

S. Gerstenkorn, P. Luc, Identification des Transitions du Systemes, (B-X) de la Molecule d’Iode et Facteurs de Franck-Condon, 14000–15600 cm-1 (Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II 91405 Orsay, France, 1986).

Geschwind, S.

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular I2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19, 138–141 (1971).
[CrossRef]

Gläser, M.

M. Gläser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 54, 335–342 (1985).
[CrossRef]

Hackel, L. A.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interactions in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

Hanson, R. K.

B. Hiller, R. K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990).
[CrossRef]

Harrison, J. A.

Hiller, B.

B. Hiller, R. K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990).
[CrossRef]

Hoffman, D.

Innes, K. K.

M. Kroll, K. K. Innes, “Molecular electronic spectroscopy by Fabry-Perot interferometry. Effect of nuclear quadrupole interactions on the line widths of the B3Π0+-X1Σg+ transition of the I2 molecule,” J. Mol. Spectrosc. 36, 295–309 (1970).
[CrossRef]

Komine, H.

H. Komine, S. J. Brosnan, A. B. Litton, E. A. Stappaerts, “Real-time, Doppler global velocimetry,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1991), paper 91-0337.

Kroll, M.

M. Kroll, K. K. Innes, “Molecular electronic spectroscopy by Fabry-Perot interferometry. Effect of nuclear quadrupole interactions on the line widths of the B3Π0+-X1Σg+ transition of the I2 molecule,” J. Mol. Spectrosc. 36, 295–309 (1970).
[CrossRef]

Kukolich, S. G.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interactions in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

Leipertz, A.

Lempert, W. R.

J. N. Forkey, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34, 442–448 (1996).
[CrossRef]

R. B. Miles, W. R. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high speed flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

Levenson, M. D.

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 6–20 (1972).
[CrossRef]

Litton, A. B.

H. Komine, S. J. Brosnan, A. B. Litton, E. A. Stappaerts, “Real-time, Doppler global velocimetry,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1991), paper 91-0337.

Luc, P.

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B-X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule d’Iode, 14800–20000 cm-1, complement (Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II 91405 Orsay, France, 1986).

S. Gerstenkorn, P. Luc, Identification des Transitions du Systemes, (B-X) de la Molecule d’Iode et Facteurs de Franck-Condon, 14000–15600 cm-1 (Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II 91405 Orsay, France, 1986).

Miles, R. B.

J. N. Forkey, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34, 442–448 (1996).
[CrossRef]

R. B. Miles, W. R. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high speed flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

Münch, K.-U.

Nibler, J. W.

Piironen, P.

Samimy, M.

G. S. Elliott, M. Samimy, S. A. Arnette, “A molecular filter based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).

Schawlow, A. L.

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 6–20 (1972).
[CrossRef]

Shirley, J. A.

J. A. Shirley, M. Winter, “Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering,” in 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1993), paper 93-0513.

Stappaerts, E. A.

H. Komine, S. J. Brosnan, A. B. Litton, E. A. Stappaerts, “Real-time, Doppler global velocimetry,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1991), paper 91-0337.

Steinfeld, J. I.

J. I. Steinfeld, Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy (MIT, Cambridge, Mass., 1981).

Tellinghuisen, J.

J. Tellinghuisen, “Transition strengths in the visible-infrared absorption spectrum of I2,” J. Chem. Phys. 76, 4736–4744 (1982).
[CrossRef]

J. Tellinghuisen, “Intensity factors for the I2 B-X band system,” J. Quan. Spectrosc. Radiat. Transfer 19, 149–161 (1978).
[CrossRef]

L. Brewer, J. Tellinghuisen, “Quantum yield for unimolecular dissociation of I2 in visible absorption,” J. Chem. Phys. 56, 3929–3938 (1972).
[CrossRef]

Winter, M.

J. A. Shirley, M. Winter, “Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering,” in 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1993), paper 93-0513.

Zahedi, M.

AIAA J. (1)

J. N. Forkey, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34, 442–448 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. B. Miles, W. R. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high speed flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular I2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19, 138–141 (1971).
[CrossRef]

Exp. Fluids (2)

G. S. Elliott, M. Samimy, S. A. Arnette, “A molecular filter based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).

B. Hiller, R. K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990).
[CrossRef]

J. Chem. Phys. (2)

L. Brewer, J. Tellinghuisen, “Quantum yield for unimolecular dissociation of I2 in visible absorption,” J. Chem. Phys. 56, 3929–3938 (1972).
[CrossRef]

J. Tellinghuisen, “Transition strengths in the visible-infrared absorption spectrum of I2,” J. Chem. Phys. 76, 4736–4744 (1982).
[CrossRef]

J. Mol. Spectrosc. (1)

M. Kroll, K. K. Innes, “Molecular electronic spectroscopy by Fabry-Perot interferometry. Effect of nuclear quadrupole interactions on the line widths of the B3Π0+-X1Σg+ transition of the I2 molecule,” J. Mol. Spectrosc. 36, 295–309 (1970).
[CrossRef]

J. Phys. (Paris) (1)

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B-X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

J. Quan. Spectrosc. Radiat. Transfer (1)

J. Tellinghuisen, “Intensity factors for the I2 B-X band system,” J. Quan. Spectrosc. Radiat. Transfer 19, 149–161 (1978).
[CrossRef]

Opt. Commun. (1)

M. Gläser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 54, 335–342 (1985).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 6–20 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

L. A. Hackel, K. H. Casleton, S. G. Kukolich, S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interactions in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

Other (9)

J. I. Steinfeld, Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy (MIT, Cambridge, Mass., 1981).

fortran source code available over the internet. Contact Joseph N. Forkey (joe@hepcat.princeton.edu) or Richard B. Miles (miles@hepcat.princeton.edu) for details.

S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule d’Iode, 14800–20000 cm-1, complement (Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II 91405 Orsay, France, 1986).

S. Gerstenkorn, P. Luc, Identification des Transitions du Systemes, (B-X) de la Molecule d’Iode et Facteurs de Franck-Condon, 14000–15600 cm-1 (Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II 91405 Orsay, France, 1986).

D. Fletcher, NASA Ames Research Center, MS 229/1, Moffett Field, Calif. 94035-1000 (personal communication, 1991).

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1996).

M. Frenkel, N. M. Gadalla, K. N. Marsh, R. C. Wilhoit, eds., Thermodynamics Research Center, (TRC) Thermodynamic Tables—Non-Hydrocarbons (Thermodynamics Research Center, The Texas Engineering Experiment Station, The Texas A&M University System, College Station, Texas, 1975), p. ka-190.

J. A. Shirley, M. Winter, “Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering,” in 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1993), paper 93-0513.

H. Komine, S. J. Brosnan, A. B. Litton, E. A. Stappaerts, “Real-time, Doppler global velocimetry,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1991), paper 91-0337.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Model prediction of the transmission profile for a 25.28-cm-long iodine cell with temperature and pressure of 80 °C and 0.70 Torr. All the parameters used in the model were taken from the literature except for the average electronic transition strength that was changed from the literature value by approximately 7% so as to achieve the best agreement with experimental measurements. The arrow indicates the line to which the reference laser, shown in Fig. 2, was locked during the experiments.

Fig. 2
Fig. 2

Experimental apparatus used to measure the transmission profile of an iodine cell. The frequency was measured relative to that of the stabilized laser, which was locked to the P142(37,0) absorption line that is indicated in Fig. 1: M, mirror; BS, beam splitter; GRIN, gradient index.

Fig. 3
Fig. 3

Measured transmission profile, normalized to remove background absorption, of a 25.28-cm-long iodine cell with temperature and pressure of 80 °C and 0.70 Torr. The uncertainties on the transmission and relative frequency measurements were estimated to be ±2% and ±6.7 × 10-3 cm-1. Note that line 9 is missing and that line 8 is too strong in the predicted profile of Fig. 1.

Fig. 4
Fig. 4

Model prediction of the transmission profile for a 25.28-cm-long iodine cell with temperature and pressure of 80 °C and 0.70 Torr. Here the calculated position of the P181(43,0) transition has been shifted by 0.0815 cm-1 so that now all the absorption lines observed in Fig. 3 are predicted.

Fig. 5
Fig. 5

Comparison of the predicted (dashed curve) and normalized measured (solid curve) transmission profiles for a 9.88-cm-long iodine cell with temperature and pressure of 80 °C and 1.0 Torr. The uncertainties on the transmission and relative frequency measurements were estimated to be ±0.5% and ±6.7 × 10-5 cm-1.

Fig. 6
Fig. 6

Comparison of the predicted (dashed curves) and normalized measured (solid curves) transmission profiles across lines 16, 17, and 18. In all cases the cell was 9.88 cm long with a temperature of 80 °C. The pressure was (a) 0.47 Torr, (b) 1.03 Torr, (c) 2.15 Torr, (d) 3.05 Torr.

Fig. 7
Fig. 7

Comparison of the slopes calculated from the predicted (solid curves) and measured (dotted curves) transmission profiles presented in Fig. 6.

Fig. 8
Fig. 8

Sample measurement of the minimum transmissions at line center of lines 16 and 17 for a 25.28-cm-long cell with temperature and pressure of 80 °C and 0.47 Torr. Each discontinuity in the data coincides with the removal (or replacement) of a neutral density filter between the iodine cell and the photodetector and corresponds to a rescaling of the transmission axis by a factor of roughly 10.

Tables (2)

Tables Icon

Table 1 Assignments of the Major Transitions Responsible for the Lines Labeled in Figure 3

Tables Icon

Table 2 Comparison of the Measured and Predicted Optical Depths of the Optically Thick Lines Shown in Fig. 3a

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ν¯Rυ, J, υ=σ0υ-E0υ+BυJ+1J+2-DυJ+12J+22+HυJ+13J+23+LυJ+14J+24+MυJ+15J+25-BυJJ+1+DυJ2J+12-HυJ3J+13,
ν¯Pυ, J, υ=σ0υ-E0υ+BυJJ-1-DυJ2J-12+HυJ3J-13+LυJ4J-14+MυJ5J-15-BυJJ+1+DυJ2J+12-HυJ3J+13.
Δν¯NEQ=ΔeQq80.03M12+M22+3/JM1M1M1+1-8.25+M2M2M2+1-8.25-17.5,
ΔeQq=1973.0307-0.0209608Gυ-1.44052Erυ, J4381.212-Eυ, J.
Δν¯mag=ΔCJM1+M2+12M1M1+1+M2M2+1-8.75.
ΔC=42993.44381.212-Gυ0.82575-28.7532.
Iν¯I0ν¯=exp-Γigiν¯,
Γi=8π33hcν¯iggSJ,J2J+1Nυ,JgnsμeR¯2υJ|υJ2,
giν¯=2Δν¯iln 2πexp-4 ln 2ν¯-ν¯iΔν¯i2.
Δν¯i=ν¯i8kT ln 2m,
Iν¯I0ν¯=exp-i=1mΓigiν¯.
log10 P=9.75715-2867.028TW+254.180.

Metrics