Abstract

Multichannel filtering and its inherent capacity for the implementation of data-fusion algorithms for high-level image processing, as well as composite filtering and its capacity for distortion-invariant pattern-recognition tasks, are discussed and compared. Both approaches are assessed by use of binary phase-only filters to simplify implementation issues. We discuss similarities and differences of these two solutions and demonstrate that they can be merged efficiently, giving rise to a new category of filters that we call composite-multichannel filters. We illustrate this comparison and the new filter design for the case of rotation-invariant fingerprint recognition. In particular, we show that the gain in terms of encoding capacity in the case of the composite-multichannel approach can be used efficiently to introduce multichannel-filter reconfigurability.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Serati, T. K. Ewing, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).
  2. T. D. Wilkinson, Y. Pétillot, R. J. Mears, J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 1885–1890 (1995).
    [CrossRef] [PubMed]
  3. Y. Pétillot, G. Keryer, J.-L. de Bougrenet de la Tocnaye, “Real-time distortion-invariant JTC using ferroelectric liquid crystal spatial light modulators,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, Ph. Refregier, eds., Vol. PM12 of SPIE Monograph Series (SPIE Press, Bellingham, Wash., 1994), pp. 267–274.
  4. G. Keryer, J.-L. de Bougrenet de la Tocnaye, “A multichannel joint transform correlator,” Opt. Commun. 118, 102–113 (1995).
    [CrossRef]
  5. B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992).
    [CrossRef]
  6. H. J. Rajbenbach, C. Touret, J. P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).
  7. D. Casasent, D. Psaltis, “Multiple-invariant space-variant optical processors,” Appl. Opt. 17, 655–659 (1978).
    [CrossRef] [PubMed]
  8. B. J. Pernick, “Phase-only and binary phase-only spatial filters for optical correlators: a survey,” Opt. Lasers Technol. 23, 273–282 (1991).
    [CrossRef]
  9. T. D. Wilkinson, “The binary phase only matched filter,” Ph.D. dissertation (Cambridge University, Cambridge, UK, 1995).
  10. Y. Pétillot, L. Guibert, J.-L. de Bougrenet de la Tocnaye, “Partially rotation invariant composite filter for fingerprint pattern recognition,” Opt. Commun. 9, 213–219 (1996).
    [CrossRef]
  11. B. Braunecker, R. W. Hauch, A. Lohmann, “Optical character recognition on nonredundant correlation measurements,” Appl. Opt. 18, 2746–2753 (1979).
    [CrossRef] [PubMed]
  12. B. V. Dasarethy, “Fusion strategies for enhancing decision reliability in multisensor environments,” Opt. Eng. 35, 603–616 (1996).
    [CrossRef]
  13. N. Streibl, “Beam shaping with an optical array generator,” J. Mod. Opt. 36, 1559–1573 (1989).
    [CrossRef]
  14. G. Keryer, J.-L. de Bougrenet de la Tocnaye, A. Al-Falou, “Performance comparison of ferroelectric liquid-crystal-technology-based coherent optical multichannel correlators,” Appl. Opt. 36, 3043–3055 (1997).
    [CrossRef] [PubMed]

1997 (1)

1996 (2)

Y. Pétillot, L. Guibert, J.-L. de Bougrenet de la Tocnaye, “Partially rotation invariant composite filter for fingerprint pattern recognition,” Opt. Commun. 9, 213–219 (1996).
[CrossRef]

B. V. Dasarethy, “Fusion strategies for enhancing decision reliability in multisensor environments,” Opt. Eng. 35, 603–616 (1996).
[CrossRef]

1995 (2)

1992 (1)

1991 (1)

B. J. Pernick, “Phase-only and binary phase-only spatial filters for optical correlators: a survey,” Opt. Lasers Technol. 23, 273–282 (1991).
[CrossRef]

1989 (1)

N. Streibl, “Beam shaping with an optical array generator,” J. Mod. Opt. 36, 1559–1573 (1989).
[CrossRef]

1979 (1)

1978 (1)

Al-Falou, A.

Braunecker, B.

Bricot, C.

H. J. Rajbenbach, C. Touret, J. P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

Casasent, D.

Curon, M.

H. J. Rajbenbach, C. Touret, J. P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

Dasarethy, B. V.

B. V. Dasarethy, “Fusion strategies for enhancing decision reliability in multisensor environments,” Opt. Eng. 35, 603–616 (1996).
[CrossRef]

de Bougrenet de la Tocnaye, J. L.

de Bougrenet de la Tocnaye, J.-L.

G. Keryer, J.-L. de Bougrenet de la Tocnaye, A. Al-Falou, “Performance comparison of ferroelectric liquid-crystal-technology-based coherent optical multichannel correlators,” Appl. Opt. 36, 3043–3055 (1997).
[CrossRef] [PubMed]

Y. Pétillot, L. Guibert, J.-L. de Bougrenet de la Tocnaye, “Partially rotation invariant composite filter for fingerprint pattern recognition,” Opt. Commun. 9, 213–219 (1996).
[CrossRef]

G. Keryer, J.-L. de Bougrenet de la Tocnaye, “A multichannel joint transform correlator,” Opt. Commun. 118, 102–113 (1995).
[CrossRef]

Y. Pétillot, G. Keryer, J.-L. de Bougrenet de la Tocnaye, “Real-time distortion-invariant JTC using ferroelectric liquid crystal spatial light modulators,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, Ph. Refregier, eds., Vol. PM12 of SPIE Monograph Series (SPIE Press, Bellingham, Wash., 1994), pp. 267–274.

Ewing, T. K.

S. A. Serati, T. K. Ewing, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

Guibert, L.

Y. Pétillot, L. Guibert, J.-L. de Bougrenet de la Tocnaye, “Partially rotation invariant composite filter for fingerprint pattern recognition,” Opt. Commun. 9, 213–219 (1996).
[CrossRef]

Hauch, R. W.

Huignard, J. P.

H. J. Rajbenbach, C. Touret, J. P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

Johnson, K. M.

S. A. Serati, T. K. Ewing, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

Keryer, G.

G. Keryer, J.-L. de Bougrenet de la Tocnaye, A. Al-Falou, “Performance comparison of ferroelectric liquid-crystal-technology-based coherent optical multichannel correlators,” Appl. Opt. 36, 3043–3055 (1997).
[CrossRef] [PubMed]

G. Keryer, J.-L. de Bougrenet de la Tocnaye, “A multichannel joint transform correlator,” Opt. Commun. 118, 102–113 (1995).
[CrossRef]

Y. Pétillot, G. Keryer, J.-L. de Bougrenet de la Tocnaye, “Real-time distortion-invariant JTC using ferroelectric liquid crystal spatial light modulators,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, Ph. Refregier, eds., Vol. PM12 of SPIE Monograph Series (SPIE Press, Bellingham, Wash., 1994), pp. 267–274.

Lohmann, A.

Mears, R. J.

Pernick, B. J.

B. J. Pernick, “Phase-only and binary phase-only spatial filters for optical correlators: a survey,” Opt. Lasers Technol. 23, 273–282 (1991).
[CrossRef]

Pétillot, Y.

Y. Pétillot, L. Guibert, J.-L. de Bougrenet de la Tocnaye, “Partially rotation invariant composite filter for fingerprint pattern recognition,” Opt. Commun. 9, 213–219 (1996).
[CrossRef]

T. D. Wilkinson, Y. Pétillot, R. J. Mears, J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 1885–1890 (1995).
[CrossRef] [PubMed]

Y. Pétillot, G. Keryer, J.-L. de Bougrenet de la Tocnaye, “Real-time distortion-invariant JTC using ferroelectric liquid crystal spatial light modulators,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, Ph. Refregier, eds., Vol. PM12 of SPIE Monograph Series (SPIE Press, Bellingham, Wash., 1994), pp. 267–274.

Psaltis, D.

Rajbenbach, H. J.

H. J. Rajbenbach, C. Touret, J. P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

Serati, S. A.

S. A. Serati, T. K. Ewing, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

Simon, D. M.

S. A. Serati, T. K. Ewing, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

Streibl, N.

N. Streibl, “Beam shaping with an optical array generator,” J. Mod. Opt. 36, 1559–1573 (1989).
[CrossRef]

Touret, C.

H. J. Rajbenbach, C. Touret, J. P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

Vijaya Kumar, B. V. K.

Wilkinson, T. D.

Appl. Opt. (5)

J. Mod. Opt. (1)

N. Streibl, “Beam shaping with an optical array generator,” J. Mod. Opt. 36, 1559–1573 (1989).
[CrossRef]

Opt. Commun. (2)

Y. Pétillot, L. Guibert, J.-L. de Bougrenet de la Tocnaye, “Partially rotation invariant composite filter for fingerprint pattern recognition,” Opt. Commun. 9, 213–219 (1996).
[CrossRef]

G. Keryer, J.-L. de Bougrenet de la Tocnaye, “A multichannel joint transform correlator,” Opt. Commun. 118, 102–113 (1995).
[CrossRef]

Opt. Eng. (1)

B. V. Dasarethy, “Fusion strategies for enhancing decision reliability in multisensor environments,” Opt. Eng. 35, 603–616 (1996).
[CrossRef]

Opt. Lasers Technol. (1)

B. J. Pernick, “Phase-only and binary phase-only spatial filters for optical correlators: a survey,” Opt. Lasers Technol. 23, 273–282 (1991).
[CrossRef]

Other (4)

T. D. Wilkinson, “The binary phase only matched filter,” Ph.D. dissertation (Cambridge University, Cambridge, UK, 1995).

H. J. Rajbenbach, C. Touret, J. P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

S. A. Serati, T. K. Ewing, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

Y. Pétillot, G. Keryer, J.-L. de Bougrenet de la Tocnaye, “Real-time distortion-invariant JTC using ferroelectric liquid crystal spatial light modulators,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, Ph. Refregier, eds., Vol. PM12 of SPIE Monograph Series (SPIE Press, Bellingham, Wash., 1994), pp. 267–274.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Fingerprint image, fingerprint spectrum, and conventional composite filters: These binary filters are PCE invariant by rotations of 5°, 10°, 20°, and 40°, for the images with 5, 10, 20, and 40 references, respectively.

Fig. 2
Fig. 2

Uniformity of the composite filters.

Fig. 3
Fig. 3

Discrimination of the composite filters.

Fig. 4
Fig. 4

Multichannel approaches: (a) The BPOF and binary fan-out optics are separate in each channel. (b) The BPOF and binary fan-out optics are merged in each channel.

Fig. 5
Fig. 5

First pure multichannel setup: (a) the channel layout, (b) the BPOF, (c) the binary fan-out optics, (d) the peak layout in the correlation plane, and (e) the correlation plane for channel 3 recognition. Since the fan-out optics are binary, there are two correlation peaks for each channel (the peak and its conjugate).

Fig. 6
Fig. 6

Second pure multichannel setup: (a) the channel layout, (b) the BPOF with a spatial carrier, and (c) the correlation plane. The peak layout in the correlation plane is located in the center of each channel.

Fig. 7
Fig. 7

PCE’s for ±10° invariant filters: The filters used are pure multichannel. The solid curves represent the PCE’s of a multichannel filter in which the filter and fan-out are split.

Fig. 8
Fig. 8

PCE’s for ±10° invariant filters: The solid curves represent the PCE’s of a multichannel correlator in which the filter and fan-out are merged.

Fig. 9
Fig. 9

PCE’s for ±20° invariant filters: The solid curves represent the PCE’s of a multichannel filter in which the filter and fan-out are split.

Fig. 10
Fig. 10

PCE’s for ±20° invariant filters: The solid curves represent the PCE’s of a multichannel setup in which the filter and fan-out are merged.

Fig. 11
Fig. 11

Composite-multichannel filter design: First, a spatial carrier is applied to every composite filter. Second, the four composite filters are overlapped in the filter plane. Third, the filter is binarized.

Fig. 12
Fig. 12

Composite multichannel setup: (a) the channel layout, (b) the BPOF, and (c) the correlation plane. The correlation peak appears in channel 3.

Fig. 13
Fig. 13

Composite-multichannel setup versus the pure composite and pure multichannel setup for ± 10° rotation invariance.

Fig. 14
Fig. 14

Composite-multichannel setup versus the pure composite and pure multichannel setups for ±20° rotation invariance.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H=sgni=0i=N-1ωiXi,
CH=σPCEyii=0N-1PCEyii=0N-1,
ωi=PCEyi0-α,
Hi, j=sgnl=1l=4Hli-dli, j-dlj,
Hli, j=k=0k=N-1ωkXlki, j.
Hi, j=Hi, jDi, j
Di, j=2eveni2-120i<128,0j<128+2evenj-i2-120i<128,0j<128+2eveni2-12128i<256,0j<128+2eveni+j2-12128i<256,128j<256.
Hli, j=Cli, jk=0k=N-1ωkXlki, j,
Cli, j=expi2πdii+djj.
Hi, j=sgnl=1l=4 ωlClHli-dli, j-dlj,

Metrics