Abstract

The reflection grating coupler for direct affinity sensing is characterized in detail. The performance of this device and its potential in affinity sensing application are investigated with two affinity-based systems: A self-assembling protein-multilayer system based on avidin–biotin interaction was used to compare the response of the device with theoretical expectations. The analytical performance was characterized by a pesticide immunoassay carried out in an indirect test format with a covalently immobilized triazine derivative. Experimentally determined parameters were in good agreement with model calculations. During the binding of 12 protein monolayers at the surface, the change in effective refractive index Δneff detected for a single layer decreased from approximately 8 × 10-4 to less than 4 × 10-5 by more than 95%, indicating a filling of the evanescent field. By comparison with bulk refractive-index measurements, a refractive index nD ≈ 1.38 of the protein multilayer was estimated. Fitting of the model gave a refractive indexnD = 1.377 of the protein multilayer and an average thickness of 11 nm for a single protein layer. An average noise of Δneff = 8.5 ×10-7 was detected, corresponding to approximately1% of the maximum response for a protein monolayer. At a triazine derivative attached to the surface through dextran-based surface chemistry, a maximum antibody loading that corresponds to an Δneff of 1.5 × 10-3was observed. In an indirect immunoassay of the herbicide simazine, a detection limit of 0.25 µg/1 of simazine was reached with polyclonal Fab fragments in a concentration of 1 µg/ml.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
    [CrossRef]
  2. W. Lukosz, K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption–desorption processes,” in Proceedings of the Second European Conference on Integrated Optics, Florence, Italy, Conf. Pub. 227 (IEE, London, 1983), pp. 152–155.
  3. P. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sensors Actuators 15, 285–295 (1988).
    [CrossRef]
  4. D. Clerc, W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sensors Actuators B 19, 581–586 (1994).
    [CrossRef]
  5. A. Brandenburg, A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensors Actuators B 17, 35–40 (1993).
    [CrossRef]
  6. A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sensors Actuators B 30, 55–59 (1996).
    [CrossRef]
  7. R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions, Part I: Principle of operation and associated instrumentation,” Biosensors Bioelectron. 8, 347–353 (1993).
    [CrossRef]
  8. G. Gauglitz, A. Brecht, G. Kraus, W. Nahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sensors Actuators B 11, 21–27 (1993).
    [CrossRef]
  9. W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sensors Actuators A 25, 185–188 (1991).
    [CrossRef]
  10. A. Brandenburg, R. Edelhäuser, F. Hutter, “Gas sensor based on an integrated optical interferometer,” in Chemical and Medical Sensors, O. S. Wolfbeis, ed., Proc. SPIE1510, pp. 148–159 (1991).
    [CrossRef]
  11. A. Brandenburg, R. Edelhäuser, F. Hutter, “Integrated optical gas sensors using organically modified silicates as sensitive films,” Sensors Actuators B 11, 361–374 (1993).
    [CrossRef]
  12. R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors Actuators B 10, 209–217 (1993).
    [CrossRef]
  13. G. Gauglitz, J. Ingenhoff, “Integrated optical sensors for halogenated and nonhalogenated hydrocarbons,” Sensors Actuators B 11, 207–212 (1993).
    [CrossRef]
  14. K. Tiefenthaler, W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
    [CrossRef]
  15. M. T. Gale, L. G. Baraldi, R. E. Kunz, “Replicated microstructures for integrated optics,” in Nanofabrication Technologies and Device IntegrationW. Karthe, ed., Proc. SPIE2213, pp. 2–10 (1994).
    [CrossRef]
  16. T. Tamir, ed., Guided-Wave Optoelectronics, Vol. 26 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  17. M. O. Vassell, “Structure of optical guided modes in planar multilayers of optically anisotropic materials,” J. Opt. Soc. Am. 64, 166–173 (1974).
    [CrossRef]
  18. J. Piehler, A. Brecht, K. E. Geckeler, G. Gauglitz, “Surface modification for direct immunoprobes,” Biosensors Bioelectron. 11, 579–590 (1996).
    [CrossRef]
  19. M. Berger, A. Deger, J. Maler, “Verfahren zur Herstellung einer Festphasenmatrix,” European Patent0331127 B1 (16June1993).
  20. K. Tiefenthaler, Artificial Sensing Instruments (ASI) AG, Binzmühlestrasse 170b, CH-8050 Zürich, Switzerland (personal communication, 14May1996).
  21. J. Rickert, A. Brecht, W. Göpel, “QCM operation in liquids: constant sensitivity during formation of extended protein multilayers by affinity,” Anal. Chem. 69, 1441–1448 (1997).
    [CrossRef] [PubMed]
  22. K. Spaeth, A. Brecht, G. Gauglitz, “Studies on a protein multilayer adsorption by spectroscopic ellipsometry,” submitted to J. Colloid Interface Sci.
  23. A. Brecht, J. Piehler, G. Lang, G. Gauglitz, “A direct optical immunosensor for atrazine detection,” Anal. Chim. Acta 311, 289–299 (1995).
    [CrossRef]
  24. A. Sober, “Proteins,” in Handbook of Biochemistry and Molecular Biology, G. D. Fasman, ed. (CRC Press, Cleveland, Ohio, 1976).
  25. J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air–water interface,” Biopolymers 17, 1759–1772 (1978).
    [CrossRef]
  26. R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosensors Bioelectron. 11, 653–667 (1996).
    [CrossRef]
  27. R. W. Glaser, “Antigen–antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics,” Anal. Biochem. 213, 153–161 (1993).
    [CrossRef]
  28. J. Henkel, A. Brandenburg, P. Klein-Gunnewigk, U. Bilitewski, “Simultaneous determination of affinity reactions with an improved grating coupler,” presented at the Conference on Biosensors 96, Bangkok, Thailand, 29–31 May 1996.

1997

J. Rickert, A. Brecht, W. Göpel, “QCM operation in liquids: constant sensitivity during formation of extended protein multilayers by affinity,” Anal. Chem. 69, 1441–1448 (1997).
[CrossRef] [PubMed]

1996

R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosensors Bioelectron. 11, 653–667 (1996).
[CrossRef]

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sensors Actuators B 30, 55–59 (1996).
[CrossRef]

J. Piehler, A. Brecht, K. E. Geckeler, G. Gauglitz, “Surface modification for direct immunoprobes,” Biosensors Bioelectron. 11, 579–590 (1996).
[CrossRef]

1995

A. Brecht, J. Piehler, G. Lang, G. Gauglitz, “A direct optical immunosensor for atrazine detection,” Anal. Chim. Acta 311, 289–299 (1995).
[CrossRef]

1994

D. Clerc, W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sensors Actuators B 19, 581–586 (1994).
[CrossRef]

1993

A. Brandenburg, A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensors Actuators B 17, 35–40 (1993).
[CrossRef]

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions, Part I: Principle of operation and associated instrumentation,” Biosensors Bioelectron. 8, 347–353 (1993).
[CrossRef]

G. Gauglitz, A. Brecht, G. Kraus, W. Nahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sensors Actuators B 11, 21–27 (1993).
[CrossRef]

A. Brandenburg, R. Edelhäuser, F. Hutter, “Integrated optical gas sensors using organically modified silicates as sensitive films,” Sensors Actuators B 11, 361–374 (1993).
[CrossRef]

R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors Actuators B 10, 209–217 (1993).
[CrossRef]

G. Gauglitz, J. Ingenhoff, “Integrated optical sensors for halogenated and nonhalogenated hydrocarbons,” Sensors Actuators B 11, 207–212 (1993).
[CrossRef]

R. W. Glaser, “Antigen–antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics,” Anal. Biochem. 213, 153–161 (1993).
[CrossRef]

1991

W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sensors Actuators A 25, 185–188 (1991).
[CrossRef]

1989

1988

P. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sensors Actuators 15, 285–295 (1988).
[CrossRef]

1983

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
[CrossRef]

1978

J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air–water interface,” Biopolymers 17, 1759–1772 (1978).
[CrossRef]

1974

Baraldi, L. G.

M. T. Gale, L. G. Baraldi, R. E. Kunz, “Replicated microstructures for integrated optics,” in Nanofabrication Technologies and Device IntegrationW. Karthe, ed., Proc. SPIE2213, pp. 2–10 (1994).
[CrossRef]

Benjamins, J.

J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air–water interface,” Biopolymers 17, 1759–1772 (1978).
[CrossRef]

Berger, M.

M. Berger, A. Deger, J. Maler, “Verfahren zur Herstellung einer Festphasenmatrix,” European Patent0331127 B1 (16June1993).

Bier, F.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sensors Actuators B 30, 55–59 (1996).
[CrossRef]

Bilitewski, U.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sensors Actuators B 30, 55–59 (1996).
[CrossRef]

J. Henkel, A. Brandenburg, P. Klein-Gunnewigk, U. Bilitewski, “Simultaneous determination of affinity reactions with an improved grating coupler,” presented at the Conference on Biosensors 96, Bangkok, Thailand, 29–31 May 1996.

Brandenburg, A.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sensors Actuators B 30, 55–59 (1996).
[CrossRef]

A. Brandenburg, A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensors Actuators B 17, 35–40 (1993).
[CrossRef]

A. Brandenburg, R. Edelhäuser, F. Hutter, “Integrated optical gas sensors using organically modified silicates as sensitive films,” Sensors Actuators B 11, 361–374 (1993).
[CrossRef]

J. Henkel, A. Brandenburg, P. Klein-Gunnewigk, U. Bilitewski, “Simultaneous determination of affinity reactions with an improved grating coupler,” presented at the Conference on Biosensors 96, Bangkok, Thailand, 29–31 May 1996.

A. Brandenburg, R. Edelhäuser, F. Hutter, “Gas sensor based on an integrated optical interferometer,” in Chemical and Medical Sensors, O. S. Wolfbeis, ed., Proc. SPIE1510, pp. 148–159 (1991).
[CrossRef]

Brecht, A.

J. Rickert, A. Brecht, W. Göpel, “QCM operation in liquids: constant sensitivity during formation of extended protein multilayers by affinity,” Anal. Chem. 69, 1441–1448 (1997).
[CrossRef] [PubMed]

J. Piehler, A. Brecht, K. E. Geckeler, G. Gauglitz, “Surface modification for direct immunoprobes,” Biosensors Bioelectron. 11, 579–590 (1996).
[CrossRef]

A. Brecht, J. Piehler, G. Lang, G. Gauglitz, “A direct optical immunosensor for atrazine detection,” Anal. Chim. Acta 311, 289–299 (1995).
[CrossRef]

G. Gauglitz, A. Brecht, G. Kraus, W. Nahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sensors Actuators B 11, 21–27 (1993).
[CrossRef]

K. Spaeth, A. Brecht, G. Gauglitz, “Studies on a protein multilayer adsorption by spectroscopic ellipsometry,” submitted to J. Colloid Interface Sci.

Clerc, D.

D. Clerc, W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sensors Actuators B 19, 581–586 (1994).
[CrossRef]

Cronin, J.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions, Part I: Principle of operation and associated instrumentation,” Biosensors Bioelectron. 8, 347–353 (1993).
[CrossRef]

Cush, R.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions, Part I: Principle of operation and associated instrumentation,” Biosensors Bioelectron. 8, 347–353 (1993).
[CrossRef]

De Feijter, J. A.

J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air–water interface,” Biopolymers 17, 1759–1772 (1978).
[CrossRef]

Deger, A.

M. Berger, A. Deger, J. Maler, “Verfahren zur Herstellung einer Festphasenmatrix,” European Patent0331127 B1 (16June1993).

Dübendorfer, J.

R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosensors Bioelectron. 11, 653–667 (1996).
[CrossRef]

Edelhäuser, R.

A. Brandenburg, R. Edelhäuser, F. Hutter, “Integrated optical gas sensors using organically modified silicates as sensitive films,” Sensors Actuators B 11, 361–374 (1993).
[CrossRef]

A. Brandenburg, R. Edelhäuser, F. Hutter, “Gas sensor based on an integrated optical interferometer,” in Chemical and Medical Sensors, O. S. Wolfbeis, ed., Proc. SPIE1510, pp. 148–159 (1991).
[CrossRef]

Gale, M. T.

M. T. Gale, L. G. Baraldi, R. E. Kunz, “Replicated microstructures for integrated optics,” in Nanofabrication Technologies and Device IntegrationW. Karthe, ed., Proc. SPIE2213, pp. 2–10 (1994).
[CrossRef]

Gauglitz, G.

J. Piehler, A. Brecht, K. E. Geckeler, G. Gauglitz, “Surface modification for direct immunoprobes,” Biosensors Bioelectron. 11, 579–590 (1996).
[CrossRef]

A. Brecht, J. Piehler, G. Lang, G. Gauglitz, “A direct optical immunosensor for atrazine detection,” Anal. Chim. Acta 311, 289–299 (1995).
[CrossRef]

G. Gauglitz, A. Brecht, G. Kraus, W. Nahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sensors Actuators B 11, 21–27 (1993).
[CrossRef]

G. Gauglitz, J. Ingenhoff, “Integrated optical sensors for halogenated and nonhalogenated hydrocarbons,” Sensors Actuators B 11, 207–212 (1993).
[CrossRef]

K. Spaeth, A. Brecht, G. Gauglitz, “Studies on a protein multilayer adsorption by spectroscopic ellipsometry,” submitted to J. Colloid Interface Sci.

Geckeler, K. E.

J. Piehler, A. Brecht, K. E. Geckeler, G. Gauglitz, “Surface modification for direct immunoprobes,” Biosensors Bioelectron. 11, 579–590 (1996).
[CrossRef]

Glaser, R. W.

R. W. Glaser, “Antigen–antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics,” Anal. Biochem. 213, 153–161 (1993).
[CrossRef]

Goddard, N.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions, Part I: Principle of operation and associated instrumentation,” Biosensors Bioelectron. 8, 347–353 (1993).
[CrossRef]

Gombert, A.

A. Brandenburg, A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensors Actuators B 17, 35–40 (1993).
[CrossRef]

Göpel, W.

J. Rickert, A. Brecht, W. Göpel, “QCM operation in liquids: constant sensitivity during formation of extended protein multilayers by affinity,” Anal. Chem. 69, 1441–1448 (1997).
[CrossRef] [PubMed]

Greve, J.

R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors Actuators B 10, 209–217 (1993).
[CrossRef]

Heideman, R.

R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors Actuators B 10, 209–217 (1993).
[CrossRef]

Henkel, J.

J. Henkel, A. Brandenburg, P. Klein-Gunnewigk, U. Bilitewski, “Simultaneous determination of affinity reactions with an improved grating coupler,” presented at the Conference on Biosensors 96, Bangkok, Thailand, 29–31 May 1996.

Hutter, F.

A. Brandenburg, R. Edelhäuser, F. Hutter, “Integrated optical gas sensors using organically modified silicates as sensitive films,” Sensors Actuators B 11, 361–374 (1993).
[CrossRef]

A. Brandenburg, R. Edelhäuser, F. Hutter, “Gas sensor based on an integrated optical interferometer,” in Chemical and Medical Sensors, O. S. Wolfbeis, ed., Proc. SPIE1510, pp. 148–159 (1991).
[CrossRef]

Ingenhoff, J.

G. Gauglitz, J. Ingenhoff, “Integrated optical sensors for halogenated and nonhalogenated hydrocarbons,” Sensors Actuators B 11, 207–212 (1993).
[CrossRef]

Klein-Gunnewigk, P.

J. Henkel, A. Brandenburg, P. Klein-Gunnewigk, U. Bilitewski, “Simultaneous determination of affinity reactions with an improved grating coupler,” presented at the Conference on Biosensors 96, Bangkok, Thailand, 29–31 May 1996.

Kooyman, R.

R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors Actuators B 10, 209–217 (1993).
[CrossRef]

Kraus, G.

G. Gauglitz, A. Brecht, G. Kraus, W. Nahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sensors Actuators B 11, 21–27 (1993).
[CrossRef]

Kunz, R. E.

R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosensors Bioelectron. 11, 653–667 (1996).
[CrossRef]

M. T. Gale, L. G. Baraldi, R. E. Kunz, “Replicated microstructures for integrated optics,” in Nanofabrication Technologies and Device IntegrationW. Karthe, ed., Proc. SPIE2213, pp. 2–10 (1994).
[CrossRef]

Lang, G.

A. Brecht, J. Piehler, G. Lang, G. Gauglitz, “A direct optical immunosensor for atrazine detection,” Anal. Chim. Acta 311, 289–299 (1995).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
[CrossRef]

Lukosz, W.

D. Clerc, W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sensors Actuators B 19, 581–586 (1994).
[CrossRef]

W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sensors Actuators A 25, 185–188 (1991).
[CrossRef]

K. Tiefenthaler, W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
[CrossRef]

P. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sensors Actuators 15, 285–295 (1988).
[CrossRef]

W. Lukosz, K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption–desorption processes,” in Proceedings of the Second European Conference on Integrated Optics, Florence, Italy, Conf. Pub. 227 (IEE, London, 1983), pp. 152–155.

Lundström, I.

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
[CrossRef]

Maler, J.

M. Berger, A. Deger, J. Maler, “Verfahren zur Herstellung einer Festphasenmatrix,” European Patent0331127 B1 (16June1993).

Maule, C.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions, Part I: Principle of operation and associated instrumentation,” Biosensors Bioelectron. 8, 347–353 (1993).
[CrossRef]

Molloy, J.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions, Part I: Principle of operation and associated instrumentation,” Biosensors Bioelectron. 8, 347–353 (1993).
[CrossRef]

Morf, R. H.

R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosensors Bioelectron. 11, 653–667 (1996).
[CrossRef]

Nahm, W.

G. Gauglitz, A. Brecht, G. Kraus, W. Nahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sensors Actuators B 11, 21–27 (1993).
[CrossRef]

Nellen, P.

P. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sensors Actuators 15, 285–295 (1988).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
[CrossRef]

Piehler, J.

J. Piehler, A. Brecht, K. E. Geckeler, G. Gauglitz, “Surface modification for direct immunoprobes,” Biosensors Bioelectron. 11, 579–590 (1996).
[CrossRef]

A. Brecht, J. Piehler, G. Lang, G. Gauglitz, “A direct optical immunosensor for atrazine detection,” Anal. Chim. Acta 311, 289–299 (1995).
[CrossRef]

Polzius, R.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sensors Actuators B 30, 55–59 (1996).
[CrossRef]

Rickert, J.

J. Rickert, A. Brecht, W. Göpel, “QCM operation in liquids: constant sensitivity during formation of extended protein multilayers by affinity,” Anal. Chem. 69, 1441–1448 (1997).
[CrossRef] [PubMed]

Sober, A.

A. Sober, “Proteins,” in Handbook of Biochemistry and Molecular Biology, G. D. Fasman, ed. (CRC Press, Cleveland, Ohio, 1976).

Spaeth, K.

K. Spaeth, A. Brecht, G. Gauglitz, “Studies on a protein multilayer adsorption by spectroscopic ellipsometry,” submitted to J. Colloid Interface Sci.

Stamm, C.

W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sensors Actuators A 25, 185–188 (1991).
[CrossRef]

Steward, W.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions, Part I: Principle of operation and associated instrumentation,” Biosensors Bioelectron. 8, 347–353 (1993).
[CrossRef]

Tiefenthaler, K.

K. Tiefenthaler, W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
[CrossRef]

P. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sensors Actuators 15, 285–295 (1988).
[CrossRef]

K. Tiefenthaler, Artificial Sensing Instruments (ASI) AG, Binzmühlestrasse 170b, CH-8050 Zürich, Switzerland (personal communication, 14May1996).

W. Lukosz, K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption–desorption processes,” in Proceedings of the Second European Conference on Integrated Optics, Florence, Italy, Conf. Pub. 227 (IEE, London, 1983), pp. 152–155.

Vassell, M. O.

Veer, F. A.

J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air–water interface,” Biopolymers 17, 1759–1772 (1978).
[CrossRef]

Wagner, E.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sensors Actuators B 30, 55–59 (1996).
[CrossRef]

Anal. Biochem.

R. W. Glaser, “Antigen–antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics,” Anal. Biochem. 213, 153–161 (1993).
[CrossRef]

Anal. Chem.

J. Rickert, A. Brecht, W. Göpel, “QCM operation in liquids: constant sensitivity during formation of extended protein multilayers by affinity,” Anal. Chem. 69, 1441–1448 (1997).
[CrossRef] [PubMed]

Anal. Chim. Acta

A. Brecht, J. Piehler, G. Lang, G. Gauglitz, “A direct optical immunosensor for atrazine detection,” Anal. Chim. Acta 311, 289–299 (1995).
[CrossRef]

Biopolymers

J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air–water interface,” Biopolymers 17, 1759–1772 (1978).
[CrossRef]

Biosensors Bioelectron.

R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosensors Bioelectron. 11, 653–667 (1996).
[CrossRef]

J. Piehler, A. Brecht, K. E. Geckeler, G. Gauglitz, “Surface modification for direct immunoprobes,” Biosensors Bioelectron. 11, 579–590 (1996).
[CrossRef]

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions, Part I: Principle of operation and associated instrumentation,” Biosensors Bioelectron. 8, 347–353 (1993).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Sensors Actuators

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
[CrossRef]

P. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sensors Actuators 15, 285–295 (1988).
[CrossRef]

Sensors Actuators A

W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sensors Actuators A 25, 185–188 (1991).
[CrossRef]

Sensors Actuators B

A. Brandenburg, R. Edelhäuser, F. Hutter, “Integrated optical gas sensors using organically modified silicates as sensitive films,” Sensors Actuators B 11, 361–374 (1993).
[CrossRef]

R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors Actuators B 10, 209–217 (1993).
[CrossRef]

G. Gauglitz, J. Ingenhoff, “Integrated optical sensors for halogenated and nonhalogenated hydrocarbons,” Sensors Actuators B 11, 207–212 (1993).
[CrossRef]

D. Clerc, W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sensors Actuators B 19, 581–586 (1994).
[CrossRef]

A. Brandenburg, A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensors Actuators B 17, 35–40 (1993).
[CrossRef]

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sensors Actuators B 30, 55–59 (1996).
[CrossRef]

G. Gauglitz, A. Brecht, G. Kraus, W. Nahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sensors Actuators B 11, 21–27 (1993).
[CrossRef]

Other

W. Lukosz, K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption–desorption processes,” in Proceedings of the Second European Conference on Integrated Optics, Florence, Italy, Conf. Pub. 227 (IEE, London, 1983), pp. 152–155.

A. Brandenburg, R. Edelhäuser, F. Hutter, “Gas sensor based on an integrated optical interferometer,” in Chemical and Medical Sensors, O. S. Wolfbeis, ed., Proc. SPIE1510, pp. 148–159 (1991).
[CrossRef]

M. Berger, A. Deger, J. Maler, “Verfahren zur Herstellung einer Festphasenmatrix,” European Patent0331127 B1 (16June1993).

K. Tiefenthaler, Artificial Sensing Instruments (ASI) AG, Binzmühlestrasse 170b, CH-8050 Zürich, Switzerland (personal communication, 14May1996).

K. Spaeth, A. Brecht, G. Gauglitz, “Studies on a protein multilayer adsorption by spectroscopic ellipsometry,” submitted to J. Colloid Interface Sci.

A. Sober, “Proteins,” in Handbook of Biochemistry and Molecular Biology, G. D. Fasman, ed. (CRC Press, Cleveland, Ohio, 1976).

J. Henkel, A. Brandenburg, P. Klein-Gunnewigk, U. Bilitewski, “Simultaneous determination of affinity reactions with an improved grating coupler,” presented at the Conference on Biosensors 96, Bangkok, Thailand, 29–31 May 1996.

M. T. Gale, L. G. Baraldi, R. E. Kunz, “Replicated microstructures for integrated optics,” in Nanofabrication Technologies and Device IntegrationW. Karthe, ed., Proc. SPIE2213, pp. 2–10 (1994).
[CrossRef]

T. Tamir, ed., Guided-Wave Optoelectronics, Vol. 26 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Calculated intensity distribution of TE wave guided in the Ta2O5 waveguide.

Fig. 2
Fig. 2

Sensitivity of Ta2O5 waveguides as a function of the refractive index of the adlayer.

Fig. 3
Fig. 3

Effective refractive indices of a monomode waveguide as a function of thickness and refractive index of a thin adlayer.

Fig. 4
Fig. 4

Reflection grating coupler, experimental setup.

Fig. 5
Fig. 5

Typical reflected light intensity distribution showing a minimum between pixel number 700 and 900 resulting from coupling into the waveguide.

Fig. 6
Fig. 6

Changes of the effective refractive index during incubation of sugar solutions with various refractive indices.

Fig. 7
Fig. 7

Measured changes of neff with varying cover index n0 (□) and calculated values ofneff (—).

Fig. 8
Fig. 8

Baseline of the device; a noise level of 0.85 ×10-6 rms was determined by linear regression.

Fig. 9
Fig. 9

Response of the grating coupler during alternating incubations of t-BSA-biotin (100 µg/ml) and pSA (100 µg/ml); inset shows the binding curves of the third and fourth protein layers.

Fig. 10
Fig. 10

Change of neff for each protein layer and exponential fit.

Fig. 11
Fig. 11

Increase of effective refractive index with protein multilayer and model curve with nad = 1.377 and tlayer = 11 nm.

Fig. 12
Fig. 12

Characterization of surface chemistry on grating coupler: nonspecific adsorption of 1 mg/ml ovalbumin, specific binding of a triazine antibody, and regeneration by pepsin and acetonitrile/propionic acid/water.

Fig. 13
Fig. 13

Test cycle for immunoassay, including binding curve and regeneration by pepsin and acetonitrile; the inset shows an enlargement of the binding curve.

Fig. 14
Fig. 14

Inhibition of antibody binding by simazine in various concentrations (figures at the top of each curve are inµg/l).

Fig. 15
Fig. 15

Calibration curve for the detection of simazine (two measurements per concentration). A limit of detection of 0.25 µg/l for this assay is obtained.

Tables (4)

Tables Icon

Table 1 Variables Used for Theoretical Treatment

Tables Icon

Table 2 Waveguide Parameters for Numerical Calculations

Tables Icon

Table 3 Time Protocol for Attachment of Protein Layer in Multilayer System

Tables Icon

Table 4 Sensitivity and Detection Limits of Reflection Mode Grating Coupler with respect to Changes in Cover Refractive Index and Protein Adlayer in Aqueous Mediuma

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

2 kt f n f 2 - n eff 2 1 / 2 + φ 0 + φ s = 2 π m .
φ 0 = 2   arctan n f n 0 2 ρ   n eff 2 - n 0 2 1 / 2 n f 2 - n eff 2 1 / 2 ,
φ s = 2   arctan n f n s 2 ρ   n eff 2 - n s 2 1 / 2 n f 2 - n eff 2 1 / 2 ,
n eff = 1.925303 ,
d n eff d n 0 = n 0 n eff   n f 2 - n eff 2 n f 2 - n 0 2   Δ z f , 0 t eff   2 n eff 2 n 0 2 - 1 ρ ,
t eff = t f + Δ z f , 0 + Δ z f , s ,
Δ z f , 0 = λ 2 π   n eff 2 - n 0 2 - 1 / 2 n eff 2 n f 2 + n eff 2 n 0 2 - 1 - ρ ,
Δ z f , s = λ 2 π n eff 2 - n s 2 - 1 / 2 n eff 2 n f 2 + n eff 2 n s 2 - 1 - ρ .
d n eff d n 0 = 62 × 10 - 3 .
d n eff d t ad = n f 2 - n eff 2 n eff t eff   n ad 2 - n 0 2 n f 2 - n 0 2   n eff 2 n 0 2 + n eff 2 n ad 2 - 1 n eff 2 n 0 2 + n eff 2 n f 2 - 1 ρ .
n eff = n 0   sin   α + l   λ Λ .
α = 13.73 ° .
d n / d c = 0.188   ml / g ,
Γ = n ad - n amb d n / d c   t layer ,

Metrics