Abstract

The shot noise limitation as well as other factors that influence the sensitivity of measurements with a surface plasmon resonance (SPR) sensor are considered. It is demonstrated that minute changes in the refractive index of a medium close to the surface of a metal film can be detected owing to a shift in the resonance angle. In particular, changes in the adsorption layer of only a fraction of a biomolecular monolayer could be measured. Data for SPRare presented with adjacent media of air, water, as well as aqueous solutions of ethanol and sodium chloride at different concentrations. The immobilization of the protein bovine serum albumin to a specially prepared surface was monitored with the SPR technique. Specific responses to changes in the concentration and thickness of the adsorption layer were determined. The angular resolution of the present apparatus is approximately 1 millidegree, corresponding to a detection limit for an adsorbed protein layer of 15pg/mm2, which is still 2 to 3 orders of magnitude larger than the shot-noise limit, and therefore a further improvement in sensitivity is possible.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Heidelberg, 1988).
  2. E. Kretschmann, “Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberflaechenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  3. R. P. H. Kooymen, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
    [CrossRef]
  4. E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143, 513–526 (1991).
    [CrossRef]
  5. J. Van Gent, P. V. Lambeck, H. J. M. Kreuvel, G. J. Gerritsma, E. J. R. Sudhoelter, D. N. Reunhoudt, T. J. A. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” Appl. Opt. 29, 2843–2849 (1990).
    [CrossRef] [PubMed]
  6. H. E. de Brujin, R. P. H. Kooyman, J. Greve, “Choice of metal and wavelength for surface plasmon resonance sensors: some considerations,” Appl. Opt. 31, 440–442 (1992).
  7. T. Inagaki, K. Kagami, E. T. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24, 3644–3646 (1981).
    [CrossRef]
  8. R. A. Booman, G. A. Olson, D. Sarid, “Determination of loss coefficients of long-range surface plasmons,” Appl. Opt. 25, 2729–2733 (1986).
    [CrossRef] [PubMed]
  9. H. Kano, S. Kawata, “Surface-plasmon sensor for absorption-sensitivity enhancement,” Appl. Opt. 33, 5166–5170 (1994).
    [CrossRef] [PubMed]
  10. A. Van der Ziel, Noise in Measurements (Wiley, New York, 1976).
  11. J. F. Ready, Effects of High-power Laser Radiation (Academic, New York, 1971).
  12. A. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
    [CrossRef]
  13. Y. S. Lipatov, L. M. Sergeeva, Adsorption of Polymers (Wiley, New York, 1974).
  14. K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurements,” Appl. Opt. 27, 1160–1163 (1988).
    [CrossRef] [PubMed]
  15. G. Dougherty, “A compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance,” Meas. Sci. Technol. 4, 697–699 (1993).
    [CrossRef]
  16. B. Johnsson, S. Lofas, G. Lindquist, “Immobilization of proteins to a carboxymethyldextranmodified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198, 268–277 (1991).
    [CrossRef] [PubMed]
  17. P. D. Gershon, S. Khilko, “Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore Surface Plasmon Resonance detector,” J. Immunol. Methods 183, 65–76 (1995).
    [CrossRef] [PubMed]
  18. U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
    [PubMed]
  19. R. P. H. Kooyman, A. T. M. Lenferink, R. G. Eenink, J. Greve, “Vibrating mirror surface plasmon resonance immunosensor,” Anal. Chem. 63, 83–85 (1991).
    [CrossRef]
  20. X. Sun, S. Shiokawa, Y. Matsui, “Interaction of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
    [CrossRef]

1995 (2)

A. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

P. D. Gershon, S. Khilko, “Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore Surface Plasmon Resonance detector,” J. Immunol. Methods 183, 65–76 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

G. Dougherty, “A compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance,” Meas. Sci. Technol. 4, 697–699 (1993).
[CrossRef]

1992 (1)

1991 (5)

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143, 513–526 (1991).
[CrossRef]

B. Johnsson, S. Lofas, G. Lindquist, “Immobilization of proteins to a carboxymethyldextranmodified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198, 268–277 (1991).
[CrossRef] [PubMed]

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

R. P. H. Kooyman, A. T. M. Lenferink, R. G. Eenink, J. Greve, “Vibrating mirror surface plasmon resonance immunosensor,” Anal. Chem. 63, 83–85 (1991).
[CrossRef]

X. Sun, S. Shiokawa, Y. Matsui, “Interaction of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
[CrossRef]

1990 (1)

1988 (2)

R. P. H. Kooymen, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurements,” Appl. Opt. 27, 1160–1163 (1988).
[CrossRef] [PubMed]

1986 (1)

1981 (1)

T. Inagaki, K. Kagami, E. T. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24, 3644–3646 (1981).
[CrossRef]

1971 (1)

E. Kretschmann, “Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberflaechenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Arakawa, E. T.

T. Inagaki, K. Kagami, E. T. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24, 3644–3646 (1981).
[CrossRef]

Booman, R. A.

de Brujin, H. E.

Dougherty, G.

G. Dougherty, “A compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance,” Meas. Sci. Technol. 4, 697–699 (1993).
[CrossRef]

Eenink, R. G.

R. P. H. Kooyman, A. T. M. Lenferink, R. G. Eenink, J. Greve, “Vibrating mirror surface plasmon resonance immunosensor,” Anal. Chem. 63, 83–85 (1991).
[CrossRef]

Fagerstam, L.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

Gerritsma, G. J.

Gershon, P. D.

P. D. Gershon, S. Khilko, “Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore Surface Plasmon Resonance detector,” J. Immunol. Methods 183, 65–76 (1995).
[CrossRef] [PubMed]

Greve, J.

H. E. de Brujin, R. P. H. Kooyman, J. Greve, “Choice of metal and wavelength for surface plasmon resonance sensors: some considerations,” Appl. Opt. 31, 440–442 (1992).

R. P. H. Kooyman, A. T. M. Lenferink, R. G. Eenink, J. Greve, “Vibrating mirror surface plasmon resonance immunosensor,” Anal. Chem. 63, 83–85 (1991).
[CrossRef]

R. P. H. Kooymen, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Inagaki, T.

T. Inagaki, K. Kagami, E. T. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24, 3644–3646 (1981).
[CrossRef]

Ivarsson, B.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

Johnsson, B.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

B. Johnsson, S. Lofas, G. Lindquist, “Immobilization of proteins to a carboxymethyldextranmodified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198, 268–277 (1991).
[CrossRef] [PubMed]

Jonsson, U.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

Kagami, K.

T. Inagaki, K. Kagami, E. T. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24, 3644–3646 (1981).
[CrossRef]

Kano, H.

Karlsson, R.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

Kawata, S.

Khilko, S.

P. D. Gershon, S. Khilko, “Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore Surface Plasmon Resonance detector,” J. Immunol. Methods 183, 65–76 (1995).
[CrossRef] [PubMed]

Kolkman, H.

R. P. H. Kooymen, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Kolomenskii, A. A.

A. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

Kooyman, R. P. H.

H. E. de Brujin, R. P. H. Kooyman, J. Greve, “Choice of metal and wavelength for surface plasmon resonance sensors: some considerations,” Appl. Opt. 31, 440–442 (1992).

R. P. H. Kooyman, A. T. M. Lenferink, R. G. Eenink, J. Greve, “Vibrating mirror surface plasmon resonance immunosensor,” Anal. Chem. 63, 83–85 (1991).
[CrossRef]

Kooymen, R. P. H.

R. P. H. Kooymen, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberflaechenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Kreuvel, H. J. M.

Lambeck, P. V.

Lenferink, A. T. M.

R. P. H. Kooyman, A. T. M. Lenferink, R. G. Eenink, J. Greve, “Vibrating mirror surface plasmon resonance immunosensor,” Anal. Chem. 63, 83–85 (1991).
[CrossRef]

Lindquist, G.

B. Johnsson, S. Lofas, G. Lindquist, “Immobilization of proteins to a carboxymethyldextranmodified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198, 268–277 (1991).
[CrossRef] [PubMed]

Lipatov, Y. S.

Y. S. Lipatov, L. M. Sergeeva, Adsorption of Polymers (Wiley, New York, 1974).

Lofas, S.

B. Johnsson, S. Lofas, G. Lindquist, “Immobilization of proteins to a carboxymethyldextranmodified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198, 268–277 (1991).
[CrossRef] [PubMed]

Malmqvist, M.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

Matsubara, K.

Matsui, Y.

X. Sun, S. Shiokawa, Y. Matsui, “Interaction of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
[CrossRef]

Minami, S.

Olson, G. A.

Ostlin, H.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

Persson, B.

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143, 513–526 (1991).
[CrossRef]

Persson, D.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

Popma, T. J. A.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Heidelberg, 1988).

Ready, J. F.

J. F. Ready, Effects of High-power Laser Radiation (Academic, New York, 1971).

Reunhoudt, D. N.

Ronnberg, I.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

Roos, H.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143, 513–526 (1991).
[CrossRef]

Sarid, D.

Schuessler, H. A.

A. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

Sergeeva, L. M.

Y. S. Lipatov, L. M. Sergeeva, Adsorption of Polymers (Wiley, New York, 1974).

Shiokawa, S.

X. Sun, S. Shiokawa, Y. Matsui, “Interaction of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
[CrossRef]

Sjolander, S.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

Stahlberg, R.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

Stenberg, E.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143, 513–526 (1991).
[CrossRef]

Sudhoelter, E. J. R.

Sun, X.

X. Sun, S. Shiokawa, Y. Matsui, “Interaction of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
[CrossRef]

Urbaniczky, C.

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143, 513–526 (1991).
[CrossRef]

Van der Ziel, A.

A. Van der Ziel, Noise in Measurements (Wiley, New York, 1976).

Van Gent, J.

Anal. Biochem. (1)

B. Johnsson, S. Lofas, G. Lindquist, “Immobilization of proteins to a carboxymethyldextranmodified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198, 268–277 (1991).
[CrossRef] [PubMed]

Anal. Chem. (1)

R. P. H. Kooyman, A. T. M. Lenferink, R. G. Eenink, J. Greve, “Vibrating mirror surface plasmon resonance immunosensor,” Anal. Chem. 63, 83–85 (1991).
[CrossRef]

Anal. Chim. Acta (1)

R. P. H. Kooymen, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Appl. Opt. (5)

Biotechniques (1)

U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11, 620–627 (1991).
[PubMed]

J. Appl. Phys. (1)

X. Sun, S. Shiokawa, Y. Matsui, “Interaction of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
[CrossRef]

J. Colloid Interface Sci. (1)

E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143, 513–526 (1991).
[CrossRef]

J. Immunol. Methods (1)

P. D. Gershon, S. Khilko, “Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore Surface Plasmon Resonance detector,” J. Immunol. Methods 183, 65–76 (1995).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

G. Dougherty, “A compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance,” Meas. Sci. Technol. 4, 697–699 (1993).
[CrossRef]

Phys. Rev. B (2)

T. Inagaki, K. Kagami, E. T. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B 24, 3644–3646 (1981).
[CrossRef]

A. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

Z. Phys. (1)

E. Kretschmann, “Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberflaechenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Other (4)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Heidelberg, 1988).

A. Van der Ziel, Noise in Measurements (Wiley, New York, 1976).

J. F. Ready, Effects of High-power Laser Radiation (Academic, New York, 1971).

Y. S. Lipatov, L. M. Sergeeva, Adsorption of Polymers (Wiley, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Attenuated total reflection configuration for excitation of surface plasmons; dielectric permittivities and thicknesses are shown.

Fig. 2
Fig. 2

Schematic layout of the experimental setup: M1 and M2, mirrors; P, polarizer; PD1 and PD2, photodiodes.

Fig. 3
Fig. 3

Dependence of the reflection coefficient on the incidence angle at the SPR for a silver film. Arrows indicate the critical angles of total reflection. Solid curves are the theoretical data calculated according to Eq. (1) forε1 = -17 + i× 0.6. (a) External medium is air. Dotted curve represents the measured experimental points. (b) External medium is water (calculated).

Fig. 4
Fig. 4

Dependence of the reflection coefficient on the incidence angle at the SPR for a gold film. Vertical arrows indicate the critical angles of the total reflection. Solid curves are the theoretical data calculated according to Eq. (1) forε1 = -13.2 +i × 1.25. (a) External medium is air. (b) External medium is water. The horizontal arrows indicate the experimentally measured angle interval; in this interval the upper curve presents the experimental result. Data points are so close together they give the appearance of a solid curve.

Fig. 5
Fig. 5

SPR curves measured for pure water(C = 0%) and for the solution of ethanol in water with the concentration C = 0.82%. The shift of the minimum to the right with the increase of the concentration is indicated.

Fig. 6
Fig. 6

Dependence of the SPR angle shift on the concentration of ethanol solutions. The logarithmic scale is used for both axes.

Fig. 7
Fig. 7

Dependence of the SPR angle shift on the concentration for NaCl solutions. Results of two different series of measurements at the same conditions are presented. The observed scattering of the data is due mainly to the error in the determination of the solution concentration.

Fig. 8
Fig. 8

SPR response measured during the immobilization process of the BSA protein to a dextran layer deposited onto the gold film. Letters denote different time intervals at which a specific chemical was injected into the cell. Injection of the buffer (B) removes unreacted species from the cell. After the first injection of the BSA protein the response returns to the buffer baseline because the dextran layer was not activated. During the second injection of the BSA protein, which follows the injection of the mixture NHS–EDC, the linkage of the BSA molecules to the surface occurs, and the adsorption layer is measured as a SPR shift ΔRU = 0.9 kRU.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

R = r 210 2 = r 21 + r 130   exp 2 ik 1 d 1 1 + r 21 r 130   exp 2 ik 1 d 1 2 ,     r 21 = z 21 n 21 ,     r 130 = z 10 - iz 43   tan k 3 d 3 n 10 - in 43   tan k 3 d 3 ,     z i , j = ε j k i - ε i k j ,     n i , j = ε j k i + ε i k j ,     k j = ε j 2 π λ 2 - k 2 1 / 2 ,     k = 2 π λ ε 2 1 / 2   sin   θ ,     ε 4 = ε 0 ε 1 ε 3 ,     k 4 = k 0 k 1 k 3 ,
I sh = e 2 P d η Δ f / h ν 1 / 2 ,
Δ I = S 1 Δ R .
S 1 = AP 0 I / P = AP 0 e η / h ν ,
Δ R = S s Δ d 3 λ ,
S s = R θ θ = θ s   θ d 3 λ ,
Δ R = S m 2 Δ d 3 λ 2 ,
S m = 2 R θ 2 θ = θ m 1 / 2   θ m d 3 λ ,
Δ d 3 , min = 1 S s   2 c 2 Δ fhR AP 0 η ν 1 / 2 ,
Δ d 3 , min = 1 S m   8 c 4 Δ fhR AP 0 η ν 3 1 / 4 .
Δ θ n = θ m / d 3 Δ d 3 , min .
C 3 = ρ 3 Δ d 3 , min ,
Δ d 3 , min = 1.2 × 10 - 4   Å ,     Δ θ n = 10 - 6   deg ,
Δ d 3 , min = 0.1 Å ,     Δ θ n = 7 × 10 - 4   deg .
Δ T = AP 0 1 - R π   ρ c p a 2 v + χ / a 1 + Ψ ,

Metrics