Abstract

We present measurements on the polarization response of Ni–NiO–Ni diodes coupled to asymmetric spiral antennas. Our data are for the wavelength dependence of the orientation of the major axis of the polarization ellipse over the wavelength range 10.2–10.7 µm. The data are well fit by a two-wire antenna model. We find that the modes excited on the antenna are a combination of the balanced and unbalanced modes of a two-wire lossy transmission line.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30-THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
    [CrossRef]
  2. I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30-THz radiation,” Appl. Phys. A58, 329–341 (1994).
    [CrossRef]
  3. C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30-THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B63, 135–140 (1996).
    [CrossRef]
  4. T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
    [CrossRef]
  5. C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
    [CrossRef]
  6. J. D. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7, 181–187 (1959).
    [CrossRef]
  7. F. Vasey, D. Pronguê, H. Rothuizen, P. Vettiger, “Electron-beam lithography of curved structures with an enhanced vector-scan pattern generator supporting conic-based primitives,” J. Vac. Sci. Technol. B12, 3460–3464 (1994).
    [CrossRef]
  8. G. D. Boreman, A. Dogariu, C. Christodoulou, D. Kotter, “Dipole-on-dielectric model for infrared lithographic spiral antennas,” Opt. Lett. 21, 309–311 (1996).
    [CrossRef] [PubMed]
  9. J. R. Carson, “A generalization of the reciprocal theorem,” Bell Syst. Tech. J. 3, 393–399 (1924).
    [CrossRef]
  10. W. J. Getsinger, “Microstrip dispersion model,” IEEE Trans. Microwave Theory Tech. MTT-21, 34–39 (1973).
    [CrossRef]
  11. R. G. Corzine, J. A. Mosko, Four-Arm Spiral Antennas (Artech House, Norwood, Mass., 1990).

1996 (2)

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30-THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B63, 135–140 (1996).
[CrossRef]

G. D. Boreman, A. Dogariu, C. Christodoulou, D. Kotter, “Dipole-on-dielectric model for infrared lithographic spiral antennas,” Opt. Lett. 21, 309–311 (1996).
[CrossRef] [PubMed]

1994 (3)

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30-THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30-THz radiation,” Appl. Phys. A58, 329–341 (1994).
[CrossRef]

F. Vasey, D. Pronguê, H. Rothuizen, P. Vettiger, “Electron-beam lithography of curved structures with an enhanced vector-scan pattern generator supporting conic-based primitives,” J. Vac. Sci. Technol. B12, 3460–3464 (1994).
[CrossRef]

1988 (1)

T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
[CrossRef]

1981 (1)

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
[CrossRef]

1973 (1)

W. J. Getsinger, “Microstrip dispersion model,” IEEE Trans. Microwave Theory Tech. MTT-21, 34–39 (1973).
[CrossRef]

1959 (1)

J. D. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7, 181–187 (1959).
[CrossRef]

1924 (1)

J. R. Carson, “A generalization of the reciprocal theorem,” Bell Syst. Tech. J. 3, 393–399 (1924).
[CrossRef]

Boreman, G. D.

Brewitt-Taylor, C. R.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
[CrossRef]

Carson, J. R.

J. R. Carson, “A generalization of the reciprocal theorem,” Bell Syst. Tech. J. 3, 393–399 (1924).
[CrossRef]

Chang, T. H. P.

T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
[CrossRef]

Christodoulou, C.

Corzine, R. G.

R. G. Corzine, J. A. Mosko, Four-Arm Spiral Antennas (Artech House, Norwood, Mass., 1990).

De Natale, P.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30-THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B63, 135–140 (1996).
[CrossRef]

Dogariu, A.

Dyson, J. D.

J. D. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7, 181–187 (1959).
[CrossRef]

Fumeaux, C.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30-THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B63, 135–140 (1996).
[CrossRef]

Getsinger, W. J.

W. J. Getsinger, “Microstrip dispersion model,” IEEE Trans. Microwave Theory Tech. MTT-21, 34–39 (1973).
[CrossRef]

Gunton, D. J.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
[CrossRef]

Herrmann, W.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30-THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B63, 135–140 (1996).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30-THz radiation,” Appl. Phys. A58, 329–341 (1994).
[CrossRef]

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30-THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
[CrossRef]

Kern, D. P.

T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
[CrossRef]

Kneubühl, F. K.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30-THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B63, 135–140 (1996).
[CrossRef]

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30-THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30-THz radiation,” Appl. Phys. A58, 329–341 (1994).
[CrossRef]

Kotter, D.

Kratschmer, E.

T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
[CrossRef]

Lee, K. Y.

T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
[CrossRef]

Luhn, H. E.

T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
[CrossRef]

McCord, M. A.

T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
[CrossRef]

Mosko, J. A.

R. G. Corzine, J. A. Mosko, Four-Arm Spiral Antennas (Artech House, Norwood, Mass., 1990).

Oppliger, Y.

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30-THz radiation,” Appl. Phys. A58, 329–341 (1994).
[CrossRef]

Pronguê, D.

F. Vasey, D. Pronguê, H. Rothuizen, P. Vettiger, “Electron-beam lithography of curved structures with an enhanced vector-scan pattern generator supporting conic-based primitives,” J. Vac. Sci. Technol. B12, 3460–3464 (1994).
[CrossRef]

Rees, H. D.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
[CrossRef]

Rishton, S. A.

T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
[CrossRef]

Rothuizen, H.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30-THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B63, 135–140 (1996).
[CrossRef]

F. Vasey, D. Pronguê, H. Rothuizen, P. Vettiger, “Electron-beam lithography of curved structures with an enhanced vector-scan pattern generator supporting conic-based primitives,” J. Vac. Sci. Technol. B12, 3460–3464 (1994).
[CrossRef]

Vasey, F.

F. Vasey, D. Pronguê, H. Rothuizen, P. Vettiger, “Electron-beam lithography of curved structures with an enhanced vector-scan pattern generator supporting conic-based primitives,” J. Vac. Sci. Technol. B12, 3460–3464 (1994).
[CrossRef]

Vettiger, P.

F. Vasey, D. Pronguê, H. Rothuizen, P. Vettiger, “Electron-beam lithography of curved structures with an enhanced vector-scan pattern generator supporting conic-based primitives,” J. Vac. Sci. Technol. B12, 3460–3464 (1994).
[CrossRef]

Vladimirsky, Y.

T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
[CrossRef]

Wilke, I.

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30-THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30-THz radiation,” Appl. Phys. A58, 329–341 (1994).
[CrossRef]

Appl. Phys. (3)

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30-THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30-THz radiation,” Appl. Phys. A58, 329–341 (1994).
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30-THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas,” Appl. Phys. B63, 135–140 (1996).
[CrossRef]

Bell Syst. Tech. J. (1)

J. R. Carson, “A generalization of the reciprocal theorem,” Bell Syst. Tech. J. 3, 393–399 (1924).
[CrossRef]

Electron. Lett. (1)

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
[CrossRef]

IBM J. Res. Dev. (1)

T. H. P. Chang, D. P. Kern, E. Kratschmer, K. Y. Lee, H. E. Luhn, M. A. McCord, S. A. Rishton, Y. Vladimirsky, “Nanostructure technology,” IBM J. Res. Dev. 32, 462–493 (1988).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

W. J. Getsinger, “Microstrip dispersion model,” IEEE Trans. Microwave Theory Tech. MTT-21, 34–39 (1973).
[CrossRef]

IRE Trans. Antennas Propag. (1)

J. D. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7, 181–187 (1959).
[CrossRef]

J. Vac. Sci. Technol. (1)

F. Vasey, D. Pronguê, H. Rothuizen, P. Vettiger, “Electron-beam lithography of curved structures with an enhanced vector-scan pattern generator supporting conic-based primitives,” J. Vac. Sci. Technol. B12, 3460–3464 (1994).
[CrossRef]

Opt. Lett. (1)

Other (1)

R. G. Corzine, J. A. Mosko, Four-Arm Spiral Antennas (Artech House, Norwood, Mass., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Electron micrograph of a spiral antenna from the air side.

Fig. 2
Fig. 2

View of spiral antenna from the substrate side.

Fig. 3
Fig. 3

Spiral structure of antenna outside of feed region.

Fig. 4
Fig. 4

Experimental apparatus for polarization measurement.

Fig. 5
Fig. 5

Polarization dependence of the MOM diode response, allowing determination of θ0.

Fig. 6
Fig. 6

Wavelength dependence of the orientationθ0 of the principal axis of the polarization ellipse of the spiral antenna. The solid line is computed from the model.

Fig. 7
Fig. 7

Wire approximation for current-wave paths used in the model.

Fig. 8
Fig. 8

Computed orientation θ0of the principal axis of the polarization ellipse of the spiral antenna at a free-space wavelength of 10.7 µm, as a function of the mode-mixing ratioU/B and the effective arm length before reflectionL.

Fig. 9
Fig. 9

Computed change Δθ0in the angle of the principal axis of the polarization ellipse of the spiral antenna over the free-space wavelength range 10.2–10.7 µm, as a function of the mode-mixing ratio U/B and the effective arm length before reflection L.

Fig. 10
Fig. 10

Intersection of the curves in Figs. 8 and 9 atU/B = -0.75 and L= 7.94 µm, yielding simultaneous solution forθ0 = 30.84° andΔθ0 = 11.75°.

Fig. 11
Fig. 11

Oscillation in detected signalversus λ0 caused by substrate interference.

Fig. 12
Fig. 12

Measured signal and maximal polarization angleθ0 versus angle of incidenceφ.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r = r 0   exp ϕ   ln   a = r 0 a ϕ ,
r 1 = r 0 a ϕ ,   r 2 = r 0 a ϕ - π / 2 ,   r 3 = r 0 a ϕ - π ,   r 4 = r 0 a ϕ + π / 2 .
δ I = δ I 0   cos 2 π λ eff   x - ω t + α exp - Γ x ,
λ eff = λ 0 ε eff λ 0 ε subst = λ 0 n ,

Metrics