Abstract

Large electro-optic effects of liquid-crystal materials are attractive in applications to various optical devices in a wider wavelength region. Fundamental optical properties in the submillimeter wave region, such as refractive indices and transmission losses for some cyanobiphenyl nematic liquid crystals, have been investigated for the first time, to our knowledge, with a submillimeter laser. Refractive indices of the liquid crystal materials for ordinary and extraordinary rays are a little larger than those in the visible region, and a larger birefringence comparable with the visible region can also be obtained. Although the loss level is larger by ∼2 orders of magnitude than that of quartz plate, which is an excellent window in the submillimeter wave region, the transmission of the liquid crystal cell is high enough.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hirabayashi, T. Yamamoto, M. Yamaguchi, “Free-space optical interconnections with liquid crystal microprism arrays,” Appl. Opt. 34, 2571–2580 (1995).
    [CrossRef] [PubMed]
  2. R. A. Forber, A. Au, U. Efron, K. Sayyah, S. T. Wu, “Dynamics IR scene projection using the Huges liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
    [CrossRef]
  3. J. S. Patel, S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–1493 (1991).
    [CrossRef]
  4. K. Hirabayashi, T. Kurokawa, “Tunable wavelength selective demultiplexer using a liquid crystal filter,” IEEE Photon. Technol. Lett. 4, 737–740 (1992).
    [CrossRef]
  5. P. Joffre, G. Illiaquer, J. P. Huignard, “Electro-optical properties of nematic liquid crystals for phase modulation in the infrared 10.6 µm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castero, ed., Proc. SPIE1126, 13–20 (1989).
    [CrossRef]
  6. I. C. Khoo, R. R. Michael, G. M. Finn, “Self-phase modulation and optical limiting of a low-power CO2 laser with a nematic liquid crystal film,” Appl. Phys. Lett. 52, 2108–2110 (1988).
    [CrossRef]
  7. S. T. Wu, J. D. Margerum, H. B. Meng, C. S. Hsu, L. R. Dalton, “Potential liquid crystal mixtures for CO2 laser application,” Appl. Phys. Lett. 64, 1204–1206 (1994).
    [CrossRef]
  8. S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033–1035 (1984).
    [CrossRef]
  9. S. T. Wu, U. Efron, L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915 (1984).
    [CrossRef] [PubMed]
  10. S. T. Wu, “Birefringence dispersion of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
    [CrossRef] [PubMed]
  11. H. Mada, A. Nishikawa, “Dielectric properties of n-pentyl-p-n-cyanobiphenyl in wide frequency range,” Jpn. J. Appl. Phys. 32, L1009–L1010 (1993).
    [CrossRef]
  12. H. Mada, M. Ryuzaki, “Ion influence on nematic liquid crystal cell impedance at low frequency,” Jpn. J. Appl. Phys. 34, L1134–1136 (1995).
    [CrossRef]
  13. J. Nakanowatari, K. Ono, “Effects of the thickness of alignment layer on the low frequency dielectric dispersion of a nematic liquid crystal,” Jpn. J. Appl. Phys. 35, L111–113 (1996).
    [CrossRef]
  14. J. Chrusciel, H. Kresse, S. Urban, “Megahertz dielectric relaxation process in the nematic and smectic phases of two thiol esters (9S5 and 10S5),” Liquid Cryst. 11, 711–718 (1992).
    [CrossRef]
  15. A. M. Lackner, K. C. Lim, J. D. Margerum, “Microtubule particle dispersion in liquid crystal hosts,” Liquid Cryst. 14, 351–359 (1993).
    [CrossRef]
  16. K. C. Lim, J. D. Margerum, A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62, 1065–1067 (1993).
    [CrossRef]
  17. K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liquid Cryst. 14, 327–337 (1993).
    [CrossRef]
  18. K. C. Lim, J. D. Margerum, A. M. Lackner, E. Sherman, “Liquid crystal based polymer for application in MMW modulation devices,” in Program and Abstract Book of 16th International Liquid Crystal Conference, Kent State University, Kent, Ohio (1996), p. 198.
  19. J. A. Dobrowolski, F. C. Ho, L. Baby, R. Boulay, B. Drouin, R. Gagnon, P. A. Belanger, “Use of the inverse synthesis method for the determination of the optical constants of paper in the far infrared,” Appl. Opt. 25, 2681–2687 (1986).
    [CrossRef] [PubMed]
  20. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1991), Chap. 1.6.

1996

J. Nakanowatari, K. Ono, “Effects of the thickness of alignment layer on the low frequency dielectric dispersion of a nematic liquid crystal,” Jpn. J. Appl. Phys. 35, L111–113 (1996).
[CrossRef]

1995

K. Hirabayashi, T. Yamamoto, M. Yamaguchi, “Free-space optical interconnections with liquid crystal microprism arrays,” Appl. Opt. 34, 2571–2580 (1995).
[CrossRef] [PubMed]

H. Mada, M. Ryuzaki, “Ion influence on nematic liquid crystal cell impedance at low frequency,” Jpn. J. Appl. Phys. 34, L1134–1136 (1995).
[CrossRef]

1994

S. T. Wu, J. D. Margerum, H. B. Meng, C. S. Hsu, L. R. Dalton, “Potential liquid crystal mixtures for CO2 laser application,” Appl. Phys. Lett. 64, 1204–1206 (1994).
[CrossRef]

1993

H. Mada, A. Nishikawa, “Dielectric properties of n-pentyl-p-n-cyanobiphenyl in wide frequency range,” Jpn. J. Appl. Phys. 32, L1009–L1010 (1993).
[CrossRef]

A. M. Lackner, K. C. Lim, J. D. Margerum, “Microtubule particle dispersion in liquid crystal hosts,” Liquid Cryst. 14, 351–359 (1993).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62, 1065–1067 (1993).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liquid Cryst. 14, 327–337 (1993).
[CrossRef]

1992

J. Chrusciel, H. Kresse, S. Urban, “Megahertz dielectric relaxation process in the nematic and smectic phases of two thiol esters (9S5 and 10S5),” Liquid Cryst. 11, 711–718 (1992).
[CrossRef]

K. Hirabayashi, T. Kurokawa, “Tunable wavelength selective demultiplexer using a liquid crystal filter,” IEEE Photon. Technol. Lett. 4, 737–740 (1992).
[CrossRef]

1991

J. S. Patel, S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–1493 (1991).
[CrossRef]

1988

I. C. Khoo, R. R. Michael, G. M. Finn, “Self-phase modulation and optical limiting of a low-power CO2 laser with a nematic liquid crystal film,” Appl. Phys. Lett. 52, 2108–2110 (1988).
[CrossRef]

1986

1984

S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033–1035 (1984).
[CrossRef]

S. T. Wu, U. Efron, L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915 (1984).
[CrossRef] [PubMed]

Au, A.

R. A. Forber, A. Au, U. Efron, K. Sayyah, S. T. Wu, “Dynamics IR scene projection using the Huges liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

Baby, L.

Belanger, P. A.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1991), Chap. 1.6.

Boulay, R.

Chrusciel, J.

J. Chrusciel, H. Kresse, S. Urban, “Megahertz dielectric relaxation process in the nematic and smectic phases of two thiol esters (9S5 and 10S5),” Liquid Cryst. 11, 711–718 (1992).
[CrossRef]

Dalton, L. R.

S. T. Wu, J. D. Margerum, H. B. Meng, C. S. Hsu, L. R. Dalton, “Potential liquid crystal mixtures for CO2 laser application,” Appl. Phys. Lett. 64, 1204–1206 (1994).
[CrossRef]

Dobrowolski, J. A.

Drouin, B.

Efron, U.

S. T. Wu, U. Efron, L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915 (1984).
[CrossRef] [PubMed]

S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033–1035 (1984).
[CrossRef]

R. A. Forber, A. Au, U. Efron, K. Sayyah, S. T. Wu, “Dynamics IR scene projection using the Huges liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

Finn, G. M.

I. C. Khoo, R. R. Michael, G. M. Finn, “Self-phase modulation and optical limiting of a low-power CO2 laser with a nematic liquid crystal film,” Appl. Phys. Lett. 52, 2108–2110 (1988).
[CrossRef]

Forber, R. A.

R. A. Forber, A. Au, U. Efron, K. Sayyah, S. T. Wu, “Dynamics IR scene projection using the Huges liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

Gagnon, R.

Hess, L. D.

S. T. Wu, U. Efron, L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915 (1984).
[CrossRef] [PubMed]

S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033–1035 (1984).
[CrossRef]

Hirabayashi, K.

K. Hirabayashi, T. Yamamoto, M. Yamaguchi, “Free-space optical interconnections with liquid crystal microprism arrays,” Appl. Opt. 34, 2571–2580 (1995).
[CrossRef] [PubMed]

K. Hirabayashi, T. Kurokawa, “Tunable wavelength selective demultiplexer using a liquid crystal filter,” IEEE Photon. Technol. Lett. 4, 737–740 (1992).
[CrossRef]

Ho, F. C.

Hsu, C. S.

S. T. Wu, J. D. Margerum, H. B. Meng, C. S. Hsu, L. R. Dalton, “Potential liquid crystal mixtures for CO2 laser application,” Appl. Phys. Lett. 64, 1204–1206 (1994).
[CrossRef]

Huignard, J. P.

P. Joffre, G. Illiaquer, J. P. Huignard, “Electro-optical properties of nematic liquid crystals for phase modulation in the infrared 10.6 µm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castero, ed., Proc. SPIE1126, 13–20 (1989).
[CrossRef]

Illiaquer, G.

P. Joffre, G. Illiaquer, J. P. Huignard, “Electro-optical properties of nematic liquid crystals for phase modulation in the infrared 10.6 µm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castero, ed., Proc. SPIE1126, 13–20 (1989).
[CrossRef]

Joffre, P.

P. Joffre, G. Illiaquer, J. P. Huignard, “Electro-optical properties of nematic liquid crystals for phase modulation in the infrared 10.6 µm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castero, ed., Proc. SPIE1126, 13–20 (1989).
[CrossRef]

Khoo, I. C.

I. C. Khoo, R. R. Michael, G. M. Finn, “Self-phase modulation and optical limiting of a low-power CO2 laser with a nematic liquid crystal film,” Appl. Phys. Lett. 52, 2108–2110 (1988).
[CrossRef]

Kresse, H.

J. Chrusciel, H. Kresse, S. Urban, “Megahertz dielectric relaxation process in the nematic and smectic phases of two thiol esters (9S5 and 10S5),” Liquid Cryst. 11, 711–718 (1992).
[CrossRef]

Kurokawa, T.

K. Hirabayashi, T. Kurokawa, “Tunable wavelength selective demultiplexer using a liquid crystal filter,” IEEE Photon. Technol. Lett. 4, 737–740 (1992).
[CrossRef]

Lackner, A. M.

K. C. Lim, J. D. Margerum, A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62, 1065–1067 (1993).
[CrossRef]

A. M. Lackner, K. C. Lim, J. D. Margerum, “Microtubule particle dispersion in liquid crystal hosts,” Liquid Cryst. 14, 351–359 (1993).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liquid Cryst. 14, 327–337 (1993).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, E. Sherman, “Liquid crystal based polymer for application in MMW modulation devices,” in Program and Abstract Book of 16th International Liquid Crystal Conference, Kent State University, Kent, Ohio (1996), p. 198.

Lee, S. D.

J. S. Patel, S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–1493 (1991).
[CrossRef]

Lim, K. C.

K. C. Lim, J. D. Margerum, A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62, 1065–1067 (1993).
[CrossRef]

A. M. Lackner, K. C. Lim, J. D. Margerum, “Microtubule particle dispersion in liquid crystal hosts,” Liquid Cryst. 14, 351–359 (1993).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liquid Cryst. 14, 327–337 (1993).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, E. Sherman, “Liquid crystal based polymer for application in MMW modulation devices,” in Program and Abstract Book of 16th International Liquid Crystal Conference, Kent State University, Kent, Ohio (1996), p. 198.

Mada, H.

H. Mada, M. Ryuzaki, “Ion influence on nematic liquid crystal cell impedance at low frequency,” Jpn. J. Appl. Phys. 34, L1134–1136 (1995).
[CrossRef]

H. Mada, A. Nishikawa, “Dielectric properties of n-pentyl-p-n-cyanobiphenyl in wide frequency range,” Jpn. J. Appl. Phys. 32, L1009–L1010 (1993).
[CrossRef]

Margerum, J. D.

S. T. Wu, J. D. Margerum, H. B. Meng, C. S. Hsu, L. R. Dalton, “Potential liquid crystal mixtures for CO2 laser application,” Appl. Phys. Lett. 64, 1204–1206 (1994).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62, 1065–1067 (1993).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liquid Cryst. 14, 327–337 (1993).
[CrossRef]

A. M. Lackner, K. C. Lim, J. D. Margerum, “Microtubule particle dispersion in liquid crystal hosts,” Liquid Cryst. 14, 351–359 (1993).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, E. Sherman, “Liquid crystal based polymer for application in MMW modulation devices,” in Program and Abstract Book of 16th International Liquid Crystal Conference, Kent State University, Kent, Ohio (1996), p. 198.

Meng, H. B.

S. T. Wu, J. D. Margerum, H. B. Meng, C. S. Hsu, L. R. Dalton, “Potential liquid crystal mixtures for CO2 laser application,” Appl. Phys. Lett. 64, 1204–1206 (1994).
[CrossRef]

Michael, R. R.

I. C. Khoo, R. R. Michael, G. M. Finn, “Self-phase modulation and optical limiting of a low-power CO2 laser with a nematic liquid crystal film,” Appl. Phys. Lett. 52, 2108–2110 (1988).
[CrossRef]

Miller, L. J.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liquid Cryst. 14, 327–337 (1993).
[CrossRef]

Nakanowatari, J.

J. Nakanowatari, K. Ono, “Effects of the thickness of alignment layer on the low frequency dielectric dispersion of a nematic liquid crystal,” Jpn. J. Appl. Phys. 35, L111–113 (1996).
[CrossRef]

Nishikawa, A.

H. Mada, A. Nishikawa, “Dielectric properties of n-pentyl-p-n-cyanobiphenyl in wide frequency range,” Jpn. J. Appl. Phys. 32, L1009–L1010 (1993).
[CrossRef]

Ono, K.

J. Nakanowatari, K. Ono, “Effects of the thickness of alignment layer on the low frequency dielectric dispersion of a nematic liquid crystal,” Jpn. J. Appl. Phys. 35, L111–113 (1996).
[CrossRef]

Patel, J. S.

J. S. Patel, S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–1493 (1991).
[CrossRef]

Ryuzaki, M.

H. Mada, M. Ryuzaki, “Ion influence on nematic liquid crystal cell impedance at low frequency,” Jpn. J. Appl. Phys. 34, L1134–1136 (1995).
[CrossRef]

Sayyah, K.

R. A. Forber, A. Au, U. Efron, K. Sayyah, S. T. Wu, “Dynamics IR scene projection using the Huges liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

Sherman, E.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liquid Cryst. 14, 327–337 (1993).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, E. Sherman, “Liquid crystal based polymer for application in MMW modulation devices,” in Program and Abstract Book of 16th International Liquid Crystal Conference, Kent State University, Kent, Ohio (1996), p. 198.

Smith, W. H.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liquid Cryst. 14, 327–337 (1993).
[CrossRef]

Urban, S.

J. Chrusciel, H. Kresse, S. Urban, “Megahertz dielectric relaxation process in the nematic and smectic phases of two thiol esters (9S5 and 10S5),” Liquid Cryst. 11, 711–718 (1992).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1991), Chap. 1.6.

Wu, S. T.

S. T. Wu, J. D. Margerum, H. B. Meng, C. S. Hsu, L. R. Dalton, “Potential liquid crystal mixtures for CO2 laser application,” Appl. Phys. Lett. 64, 1204–1206 (1994).
[CrossRef]

S. T. Wu, “Birefringence dispersion of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[CrossRef] [PubMed]

S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033–1035 (1984).
[CrossRef]

S. T. Wu, U. Efron, L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915 (1984).
[CrossRef] [PubMed]

R. A. Forber, A. Au, U. Efron, K. Sayyah, S. T. Wu, “Dynamics IR scene projection using the Huges liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

Yamaguchi, M.

Yamamoto, T.

Appl. Opt.

Appl. Phys. Lett.

J. S. Patel, S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–1493 (1991).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62, 1065–1067 (1993).
[CrossRef]

I. C. Khoo, R. R. Michael, G. M. Finn, “Self-phase modulation and optical limiting of a low-power CO2 laser with a nematic liquid crystal film,” Appl. Phys. Lett. 52, 2108–2110 (1988).
[CrossRef]

S. T. Wu, J. D. Margerum, H. B. Meng, C. S. Hsu, L. R. Dalton, “Potential liquid crystal mixtures for CO2 laser application,” Appl. Phys. Lett. 64, 1204–1206 (1994).
[CrossRef]

S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033–1035 (1984).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Hirabayashi, T. Kurokawa, “Tunable wavelength selective demultiplexer using a liquid crystal filter,” IEEE Photon. Technol. Lett. 4, 737–740 (1992).
[CrossRef]

Jpn. J. Appl. Phys.

H. Mada, A. Nishikawa, “Dielectric properties of n-pentyl-p-n-cyanobiphenyl in wide frequency range,” Jpn. J. Appl. Phys. 32, L1009–L1010 (1993).
[CrossRef]

H. Mada, M. Ryuzaki, “Ion influence on nematic liquid crystal cell impedance at low frequency,” Jpn. J. Appl. Phys. 34, L1134–1136 (1995).
[CrossRef]

J. Nakanowatari, K. Ono, “Effects of the thickness of alignment layer on the low frequency dielectric dispersion of a nematic liquid crystal,” Jpn. J. Appl. Phys. 35, L111–113 (1996).
[CrossRef]

Liquid Cryst.

J. Chrusciel, H. Kresse, S. Urban, “Megahertz dielectric relaxation process in the nematic and smectic phases of two thiol esters (9S5 and 10S5),” Liquid Cryst. 11, 711–718 (1992).
[CrossRef]

A. M. Lackner, K. C. Lim, J. D. Margerum, “Microtubule particle dispersion in liquid crystal hosts,” Liquid Cryst. 14, 351–359 (1993).
[CrossRef]

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liquid Cryst. 14, 327–337 (1993).
[CrossRef]

Phys. Rev. A

S. T. Wu, “Birefringence dispersion of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[CrossRef] [PubMed]

Other

K. C. Lim, J. D. Margerum, A. M. Lackner, E. Sherman, “Liquid crystal based polymer for application in MMW modulation devices,” in Program and Abstract Book of 16th International Liquid Crystal Conference, Kent State University, Kent, Ohio (1996), p. 198.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1991), Chap. 1.6.

P. Joffre, G. Illiaquer, J. P. Huignard, “Electro-optical properties of nematic liquid crystals for phase modulation in the infrared 10.6 µm,” in Electro-Optic and Magneto-Optic Materials and Applications, J. P. Castero, ed., Proc. SPIE1126, 13–20 (1989).
[CrossRef]

R. A. Forber, A. Au, U. Efron, K. Sayyah, S. T. Wu, “Dynamics IR scene projection using the Huges liquid crystal light valve,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 259–273 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Submillimeter laser system.

Fig. 2
Fig. 2

Structure of the liquid-crystal cell and its layered model. MS, MLC, characteristic matrix for each layer. Incident angle θ is defined as the angle between the normal direction of the surface and the incident light.

Fig. 3
Fig. 3

Transmission light intensity properties as a function of the light-incident angle for the quartz substrate, where the wavelength is 215 µm.

Fig. 4
Fig. 4

Transmission light intensity properties of the liquid crystal cell (K15) for (a) the ordinary ray and (b) the extraordinary ray. The wavelength is 215 µm.

Fig. 5
Fig. 5

Real part of the refractive index of K15 as a function of wavelength for ordinary and extraordinary rays. The triangle shows the data obtained in an isotropic phase.

Fig. 6
Fig. 6

Real part of the refractive index of E44.

Fig. 7
Fig. 7

Real part of the refractive index of BL009.

Fig. 8
Fig. 8

Birefringence of the liquid-crystal materials as a function of the wavelength.

Tables (1)

Tables Icon

Table 1 Summary of the Calculated Dataa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M=m11m12m21m22,
t=2P0m11+m12P0P0+m21+m22P0, P0=ε0/μ01/2cos θ, T=t2 transmittance.

Metrics