Abstract

With a high-refractive-index mixed-oxide dielectric material of ZrTiO4 and ZrO2 [Substance H2 (Sub2) from E. Merck, Darmstadt, Germany], in combination with magnesium flouride (MgF2), design optimization and experimental production of low-loss antireflection (AR) coatings are carried out. Design-optimization studies that make use of these materials as constituents of a seven-layer coating system demonstrate that when the useful bandwidth of an AR coating is extended to cover a wider spectral range, the designs are in general found to have increased integrated reflection loss, higher ripple, and increased spectral instability. The experimental studies on Sub2 material show that the films have excellent optical performance over a wider process window, the advantage of which is demonstrated in the production of different AR coatings on a variety of glasses with refractive indices that range from 1.45 to 1.784 and different mechanical, thermal, and chemical properties. The manufacturing process of AR coatings shows a consistency better than 99% with respect to optical properties and durability.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Davi, “High stability coatings for space optics: application to Silex program,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baumen, E. Sein, eds., Proc. SPIE2210, 498–505 (1994).
    [CrossRef]
  2. G. K. M. Thutupalli, C. L. Nagendra, “Optical coatings for space applications,” Indian J. Phys. A 63, 661–756 (1989).
  3. A. Thelen, R. Langfeld, “Coating design contest: antireflection coatings for lenses to be used with normal and infrared photographic film,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 552–601 (1992).
    [CrossRef]
  4. J. A. Dobrowolski, F. Ho, “High performance step-down AR coatings for high refractive-index IR materials,” Appl. Opt. 21, 288–292 (1982).
    [CrossRef] [PubMed]
  5. C. L. Nagendra, G. K. M. Thutupalli, “Design of three-layer antireflection coatings: a generalized approach,” Appl. Opt. 27, 2320–2333 (1988).
    [CrossRef] [PubMed]
  6. A. Premoli, M. L. Rastello, “Minimax refining of wideband antireflection coatings for wide angular incidence,” Appl. Opt. 33, 2018–2024 (1994).
    [CrossRef] [PubMed]
  7. W. H. Southwell, “Graded index antireflection coatings,” Opt. Lett. 8, 584–587 (1983).
    [CrossRef] [PubMed]
  8. H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin film monitoring systems,” Opt. Acta 24, 907–930 (1977).
    [CrossRef]
  9. C. Grèzes-Besset, F. Chazallet, G. Albrand, E. Pelletier, “Synthesis and research of the optimum conditions for the optical monitoring of non-quarter-wave multilayers,” Appl. Opt. 32, 5612–5618 (1993).
    [CrossRef]
  10. P. J. Martin, R. P. Netterfield, “Optical thin films produced by ion-based techniques,” in Progress in Optics, E. Wolf, ed. (Permanon, New York, 1989), Vol. 23, pp. 115–182.
  11. W. C. Herrmann, “E-beam deposition and characterization of reactively evaporated Ta2O5 for optical interference coatings,” J. Vac. Sci. Technol. 18, 1303–1305 (1981).
    [CrossRef]
  12. H. G. Shanbhogue, S. Ajith Kumar, M. N. Annapurna, S. N. Prasad, C. L. Nagendra, G. K. M. Thutupalli, “Visible and near IR antireflection coatings for advanced electro-optical systems,” J. Spacecr. Technol. 5, 16–25 (1995).
  13. F. Lepretre, “Lens assemblies for multi spectral camera,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baumen, E. Sein, eds., Proc. SPIE2210, 587–600 (1994).
    [CrossRef]
  14. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), pp. 20 and 371.
  15. R. R. Willey, “Predicting achievable design performance of broadband antireflection coatings,” Appl. Opt. 32, 5447–5451 (1993).
    [CrossRef] [PubMed]
  16. A. J. Waldrof, J. A. Dobrowolski, B. T. Sullivan, L. M. Plante, “Optical coatings deposited by reactive ion plating,” Appl. Opt. 32, 5583–5593 (1993).
    [CrossRef]
  17. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996).
    [CrossRef] [PubMed]
  18. K. H. Guenther, “Physical and chemical aspects in the application of thin films on optical elements,” Appl. Opt. 23, 3612–3632 (1984).
    [CrossRef] [PubMed]
  19. K. H. Guenther, “Microstructure of vapor-deposited optical coatings,” Appl. Opt. 23, 3806–3816 (1984).
    [CrossRef] [PubMed]
  20. M. Cesro, G. Carter, “Ion-beam and dual ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
    [CrossRef]
  21. F. Setter, R. Esselborn, N. Harder, M. Frizona, P. Folles, “New materials for optical thin films,” Appl. Opt. 15, 2315–2317 (1976).
    [CrossRef]
  22. M. Cevro, “Ion-beam sputtering of (Ta2O5)1-X–(SiO2)1-X composite thin films,” Thin Solid Films 258, 91–103 (1995).
    [CrossRef]
  23. H. W. Zhang, S. X. Liu, “Optical composite film deposited by a double e-gun,” Thin Solid Films 209, 148–149 (1992).
    [CrossRef]
  24. J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “Mixed films of TiO2–SiO2 deposited by double electron beam coevaporation,” Appl. Opt. 35, 90–96 (1996).
    [CrossRef] [PubMed]
  25. R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films prepared by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
    [CrossRef]
  26. C. L. Nagendra, G. K. M. Thutupalli, “Optical constants of infrared (IR) materials in the IR region,” J. Spacecr. Technol. 2, 7–17 (1992).
  27. C. L. Nagendra, G. K. M. Thutupalli, “Optical constants of absorbing thin films,” Vacuum 31, 141–145 (1981).
    [CrossRef]
  28. R. E. Denton, R. D. Campbell, S. G. Tomlin, “The determination of optical constants of thin film coating materials,” J. Phys. D 5, 852–863 (1972).
    [CrossRef]
  29. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982).
    [CrossRef] [PubMed]
  30. H. K. Pulker, “Characterization of optical thin films,” Appl. Opt. 18, 1969–1977 (1979).
    [CrossRef] [PubMed]
  31. E. Ritter, “Dielectric film materials for optical applications,” in Physics of Thin FilmsG. Hass, M. H. Francombe, R. K. Hoffman, eds. (Academic, New York, 1975), Vol. 8, pp. 1–49.
  32. E. D. Pallick, ed., Handbook of Optical Constants of Solids, (Academic, New York, 1991), Vol. II, p. 899.
  33. A. S. Valeev, “Determination of the optical constants of weakly absorbing thin films,” Opt. Spectrosc. 15, 269–274 (1963).
  34. O. Pierre, I. Asseman, J. Dauphin, “GOMOS: global ozone monitoring by occulation of stars,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 68–77 (1994).
  35. A. J. Ratkowski, R. J. Huppi, M. P. Fetrow, “NIR/SWIR imaging spectrometer for light satellites,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 225–235 (1994).
  36. M. N. Annapurna, C. L. Nagendra, G. K. M. Thutupalli, “Software package optosoft for design of optical coatings,” , 1988 (Indian Space Research Organization, Bangalore, India).
  37. M. N. Annapurna, C. L. Nagendra, G. K. M. Thutupalli, “A new approach to the definition of merit function in numerical optimization methods,” presented at the Seventh International Symposium on Thin Films, The Indian Institute of Technology Delhi, The Indian Vacuum Society, New Delhi, India, 7–11 December 1987.
  38. M. Born, E. Wolf, Progress in Optics (Pergamon, New York, 1970), p. 70.
  39. O. S. Heavens, H. M. Liddell, “Least-squares method for automatic design of multilayers,” Opt. Acta 15, 129–138 (1968).
  40. M. J. D. Powell, “An efficient method for finding the minimum of a merit function of several variables without calculation of derivatives,” Comput. J. 7, 155–159 (1964).
    [CrossRef]
  41. J. Mouchart, “Thin film optical coatings. 1. Optical coating stabilities,” Appl. Opt. 16, 2486–2490 (1977).
    [CrossRef] [PubMed]
  42. Optical Glass: Supplements and Amendments to Optical Glass Catalogue No. 3111e IX/80, Situation VIII (Schott Glass Technologies, Inc., Germany, 1984).

1996 (2)

1995 (4)

H. G. Shanbhogue, S. Ajith Kumar, M. N. Annapurna, S. N. Prasad, C. L. Nagendra, G. K. M. Thutupalli, “Visible and near IR antireflection coatings for advanced electro-optical systems,” J. Spacecr. Technol. 5, 16–25 (1995).

R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films prepared by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
[CrossRef]

M. Cesro, G. Carter, “Ion-beam and dual ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[CrossRef]

M. Cevro, “Ion-beam sputtering of (Ta2O5)1-X–(SiO2)1-X composite thin films,” Thin Solid Films 258, 91–103 (1995).
[CrossRef]

1994 (1)

1993 (3)

1992 (2)

H. W. Zhang, S. X. Liu, “Optical composite film deposited by a double e-gun,” Thin Solid Films 209, 148–149 (1992).
[CrossRef]

C. L. Nagendra, G. K. M. Thutupalli, “Optical constants of infrared (IR) materials in the IR region,” J. Spacecr. Technol. 2, 7–17 (1992).

1989 (1)

G. K. M. Thutupalli, C. L. Nagendra, “Optical coatings for space applications,” Indian J. Phys. A 63, 661–756 (1989).

1988 (1)

1984 (2)

1983 (1)

1982 (2)

1981 (2)

W. C. Herrmann, “E-beam deposition and characterization of reactively evaporated Ta2O5 for optical interference coatings,” J. Vac. Sci. Technol. 18, 1303–1305 (1981).
[CrossRef]

C. L. Nagendra, G. K. M. Thutupalli, “Optical constants of absorbing thin films,” Vacuum 31, 141–145 (1981).
[CrossRef]

1979 (1)

1977 (2)

J. Mouchart, “Thin film optical coatings. 1. Optical coating stabilities,” Appl. Opt. 16, 2486–2490 (1977).
[CrossRef] [PubMed]

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

1976 (1)

1972 (1)

R. E. Denton, R. D. Campbell, S. G. Tomlin, “The determination of optical constants of thin film coating materials,” J. Phys. D 5, 852–863 (1972).
[CrossRef]

1968 (1)

O. S. Heavens, H. M. Liddell, “Least-squares method for automatic design of multilayers,” Opt. Acta 15, 129–138 (1968).

1964 (1)

M. J. D. Powell, “An efficient method for finding the minimum of a merit function of several variables without calculation of derivatives,” Comput. J. 7, 155–159 (1964).
[CrossRef]

1963 (1)

A. S. Valeev, “Determination of the optical constants of weakly absorbing thin films,” Opt. Spectrosc. 15, 269–274 (1963).

Ajith Kumar, S.

H. G. Shanbhogue, S. Ajith Kumar, M. N. Annapurna, S. N. Prasad, C. L. Nagendra, G. K. M. Thutupalli, “Visible and near IR antireflection coatings for advanced electro-optical systems,” J. Spacecr. Technol. 5, 16–25 (1995).

Albrand, G.

Annapurna, M. N.

H. G. Shanbhogue, S. Ajith Kumar, M. N. Annapurna, S. N. Prasad, C. L. Nagendra, G. K. M. Thutupalli, “Visible and near IR antireflection coatings for advanced electro-optical systems,” J. Spacecr. Technol. 5, 16–25 (1995).

M. N. Annapurna, C. L. Nagendra, G. K. M. Thutupalli, “Software package optosoft for design of optical coatings,” , 1988 (Indian Space Research Organization, Bangalore, India).

M. N. Annapurna, C. L. Nagendra, G. K. M. Thutupalli, “A new approach to the definition of merit function in numerical optimization methods,” presented at the Seventh International Symposium on Thin Films, The Indian Institute of Technology Delhi, The Indian Vacuum Society, New Delhi, India, 7–11 December 1987.

Asseman, I.

O. Pierre, I. Asseman, J. Dauphin, “GOMOS: global ozone monitoring by occulation of stars,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 68–77 (1994).

Borgogno, J. P.

Born, M.

M. Born, E. Wolf, Progress in Optics (Pergamon, New York, 1970), p. 70.

Campbell, R. D.

R. E. Denton, R. D. Campbell, S. G. Tomlin, “The determination of optical constants of thin film coating materials,” J. Phys. D 5, 852–863 (1972).
[CrossRef]

Carter, G.

M. Cesro, G. Carter, “Ion-beam and dual ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[CrossRef]

Cesro, M.

M. Cesro, G. Carter, “Ion-beam and dual ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[CrossRef]

Cevro, M.

M. Cevro, “Ion-beam sputtering of (Ta2O5)1-X–(SiO2)1-X composite thin films,” Thin Solid Films 258, 91–103 (1995).
[CrossRef]

Chao, S.

Chazallet, F.

Chen, C.-H.

Chen, J.-S.

Dauphin, J.

O. Pierre, I. Asseman, J. Dauphin, “GOMOS: global ozone monitoring by occulation of stars,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 68–77 (1994).

Davi, P.

P. Davi, “High stability coatings for space optics: application to Silex program,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baumen, E. Sein, eds., Proc. SPIE2210, 498–505 (1994).
[CrossRef]

Denton, R. E.

R. E. Denton, R. D. Campbell, S. G. Tomlin, “The determination of optical constants of thin film coating materials,” J. Phys. D 5, 852–863 (1972).
[CrossRef]

Dobrowolski, J. A.

Esselborn, R.

Fetrow, M. P.

A. J. Ratkowski, R. J. Huppi, M. P. Fetrow, “NIR/SWIR imaging spectrometer for light satellites,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 225–235 (1994).

Folles, P.

Frizona, M.

Grèzes-Besset, C.

Guenther, K. H.

Harder, N.

Heavens, O. S.

O. S. Heavens, H. M. Liddell, “Least-squares method for automatic design of multilayers,” Opt. Acta 15, 129–138 (1968).

Herrmann, W. C.

W. C. Herrmann, “E-beam deposition and characterization of reactively evaporated Ta2O5 for optical interference coatings,” J. Vac. Sci. Technol. 18, 1303–1305 (1981).
[CrossRef]

Ho, F.

Ho, F. C.

R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films prepared by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
[CrossRef]

Hua, M.-Y.

R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films prepared by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
[CrossRef]

Huppi, R. J.

A. J. Ratkowski, R. J. Huppi, M. P. Fetrow, “NIR/SWIR imaging spectrometer for light satellites,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 225–235 (1994).

Kao, J.-S.

Langfeld, R.

A. Thelen, R. Langfeld, “Coating design contest: antireflection coatings for lenses to be used with normal and infrared photographic film,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 552–601 (1992).
[CrossRef]

Lazarides, B.

Lepretre, F.

F. Lepretre, “Lens assemblies for multi spectral camera,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baumen, E. Sein, eds., Proc. SPIE2210, 587–600 (1994).
[CrossRef]

Liddell, H. M.

O. S. Heavens, H. M. Liddell, “Least-squares method for automatic design of multilayers,” Opt. Acta 15, 129–138 (1968).

Liu, S. X.

H. W. Zhang, S. X. Liu, “Optical composite film deposited by a double e-gun,” Thin Solid Films 209, 148–149 (1992).
[CrossRef]

Macleod, H. A.

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

Martin, P. J.

P. J. Martin, R. P. Netterfield, “Optical thin films produced by ion-based techniques,” in Progress in Optics, E. Wolf, ed. (Permanon, New York, 1989), Vol. 23, pp. 115–182.

Mouchart, J.

Nagendra, C. L.

H. G. Shanbhogue, S. Ajith Kumar, M. N. Annapurna, S. N. Prasad, C. L. Nagendra, G. K. M. Thutupalli, “Visible and near IR antireflection coatings for advanced electro-optical systems,” J. Spacecr. Technol. 5, 16–25 (1995).

C. L. Nagendra, G. K. M. Thutupalli, “Optical constants of infrared (IR) materials in the IR region,” J. Spacecr. Technol. 2, 7–17 (1992).

G. K. M. Thutupalli, C. L. Nagendra, “Optical coatings for space applications,” Indian J. Phys. A 63, 661–756 (1989).

C. L. Nagendra, G. K. M. Thutupalli, “Design of three-layer antireflection coatings: a generalized approach,” Appl. Opt. 27, 2320–2333 (1988).
[CrossRef] [PubMed]

C. L. Nagendra, G. K. M. Thutupalli, “Optical constants of absorbing thin films,” Vacuum 31, 141–145 (1981).
[CrossRef]

M. N. Annapurna, C. L. Nagendra, G. K. M. Thutupalli, “A new approach to the definition of merit function in numerical optimization methods,” presented at the Seventh International Symposium on Thin Films, The Indian Institute of Technology Delhi, The Indian Vacuum Society, New Delhi, India, 7–11 December 1987.

M. N. Annapurna, C. L. Nagendra, G. K. M. Thutupalli, “Software package optosoft for design of optical coatings,” , 1988 (Indian Space Research Organization, Bangalore, India).

Netterfield, R. P.

P. J. Martin, R. P. Netterfield, “Optical thin films produced by ion-based techniques,” in Progress in Optics, E. Wolf, ed. (Permanon, New York, 1989), Vol. 23, pp. 115–182.

Niu, H.

Pelletier, E.

Pierre, O.

O. Pierre, I. Asseman, J. Dauphin, “GOMOS: global ozone monitoring by occulation of stars,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 68–77 (1994).

Plante, L. M.

Powell, M. J. D.

M. J. D. Powell, “An efficient method for finding the minimum of a merit function of several variables without calculation of derivatives,” Comput. J. 7, 155–159 (1964).
[CrossRef]

Prasad, S. N.

H. G. Shanbhogue, S. Ajith Kumar, M. N. Annapurna, S. N. Prasad, C. L. Nagendra, G. K. M. Thutupalli, “Visible and near IR antireflection coatings for advanced electro-optical systems,” J. Spacecr. Technol. 5, 16–25 (1995).

Premoli, A.

Pulker, H. K.

H. K. Pulker, “Characterization of optical thin films,” Appl. Opt. 18, 1969–1977 (1979).
[CrossRef] [PubMed]

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), pp. 20 and 371.

Rastello, M. L.

Ratkowski, A. J.

A. J. Ratkowski, R. J. Huppi, M. P. Fetrow, “NIR/SWIR imaging spectrometer for light satellites,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 225–235 (1994).

Ritter, E.

E. Ritter, “Dielectric film materials for optical applications,” in Physics of Thin FilmsG. Hass, M. H. Francombe, R. K. Hoffman, eds. (Academic, New York, 1975), Vol. 8, pp. 1–49.

Setter, F.

Shanbhogue, H. G.

H. G. Shanbhogue, S. Ajith Kumar, M. N. Annapurna, S. N. Prasad, C. L. Nagendra, G. K. M. Thutupalli, “Visible and near IR antireflection coatings for advanced electro-optical systems,” J. Spacecr. Technol. 5, 16–25 (1995).

Southwell, W. H.

Sullivan, B. T.

Thelen, A.

A. Thelen, R. Langfeld, “Coating design contest: antireflection coatings for lenses to be used with normal and infrared photographic film,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 552–601 (1992).
[CrossRef]

Thutupalli, G. K. M.

H. G. Shanbhogue, S. Ajith Kumar, M. N. Annapurna, S. N. Prasad, C. L. Nagendra, G. K. M. Thutupalli, “Visible and near IR antireflection coatings for advanced electro-optical systems,” J. Spacecr. Technol. 5, 16–25 (1995).

C. L. Nagendra, G. K. M. Thutupalli, “Optical constants of infrared (IR) materials in the IR region,” J. Spacecr. Technol. 2, 7–17 (1992).

G. K. M. Thutupalli, C. L. Nagendra, “Optical coatings for space applications,” Indian J. Phys. A 63, 661–756 (1989).

C. L. Nagendra, G. K. M. Thutupalli, “Design of three-layer antireflection coatings: a generalized approach,” Appl. Opt. 27, 2320–2333 (1988).
[CrossRef] [PubMed]

C. L. Nagendra, G. K. M. Thutupalli, “Optical constants of absorbing thin films,” Vacuum 31, 141–145 (1981).
[CrossRef]

M. N. Annapurna, C. L. Nagendra, G. K. M. Thutupalli, “Software package optosoft for design of optical coatings,” , 1988 (Indian Space Research Organization, Bangalore, India).

M. N. Annapurna, C. L. Nagendra, G. K. M. Thutupalli, “A new approach to the definition of merit function in numerical optimization methods,” presented at the Seventh International Symposium on Thin Films, The Indian Institute of Technology Delhi, The Indian Vacuum Society, New Delhi, India, 7–11 December 1987.

Tikhonravov, A. V.

Tomlin, S. G.

R. E. Denton, R. D. Campbell, S. G. Tomlin, “The determination of optical constants of thin film coating materials,” J. Phys. D 5, 852–863 (1972).
[CrossRef]

Trubetskov, M. K.

Tsai, R.-Y.

R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films prepared by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
[CrossRef]

Valeev, A. S.

A. S. Valeev, “Determination of the optical constants of weakly absorbing thin films,” Opt. Spectrosc. 15, 269–274 (1963).

Verly, P. G.

Waldrof, A. J.

Willey, R. R.

Wolf, E.

M. Born, E. Wolf, Progress in Optics (Pergamon, New York, 1970), p. 70.

Zhang, H. W.

H. W. Zhang, S. X. Liu, “Optical composite film deposited by a double e-gun,” Thin Solid Films 209, 148–149 (1992).
[CrossRef]

Appl. Opt. (14)

J. A. Dobrowolski, F. Ho, “High performance step-down AR coatings for high refractive-index IR materials,” Appl. Opt. 21, 288–292 (1982).
[CrossRef] [PubMed]

C. L. Nagendra, G. K. M. Thutupalli, “Design of three-layer antireflection coatings: a generalized approach,” Appl. Opt. 27, 2320–2333 (1988).
[CrossRef] [PubMed]

A. Premoli, M. L. Rastello, “Minimax refining of wideband antireflection coatings for wide angular incidence,” Appl. Opt. 33, 2018–2024 (1994).
[CrossRef] [PubMed]

C. Grèzes-Besset, F. Chazallet, G. Albrand, E. Pelletier, “Synthesis and research of the optimum conditions for the optical monitoring of non-quarter-wave multilayers,” Appl. Opt. 32, 5612–5618 (1993).
[CrossRef]

R. R. Willey, “Predicting achievable design performance of broadband antireflection coatings,” Appl. Opt. 32, 5447–5451 (1993).
[CrossRef] [PubMed]

A. J. Waldrof, J. A. Dobrowolski, B. T. Sullivan, L. M. Plante, “Optical coatings deposited by reactive ion plating,” Appl. Opt. 32, 5583–5593 (1993).
[CrossRef]

J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996).
[CrossRef] [PubMed]

K. H. Guenther, “Physical and chemical aspects in the application of thin films on optical elements,” Appl. Opt. 23, 3612–3632 (1984).
[CrossRef] [PubMed]

K. H. Guenther, “Microstructure of vapor-deposited optical coatings,” Appl. Opt. 23, 3806–3816 (1984).
[CrossRef] [PubMed]

F. Setter, R. Esselborn, N. Harder, M. Frizona, P. Folles, “New materials for optical thin films,” Appl. Opt. 15, 2315–2317 (1976).
[CrossRef]

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “Mixed films of TiO2–SiO2 deposited by double electron beam coevaporation,” Appl. Opt. 35, 90–96 (1996).
[CrossRef] [PubMed]

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982).
[CrossRef] [PubMed]

H. K. Pulker, “Characterization of optical thin films,” Appl. Opt. 18, 1969–1977 (1979).
[CrossRef] [PubMed]

J. Mouchart, “Thin film optical coatings. 1. Optical coating stabilities,” Appl. Opt. 16, 2486–2490 (1977).
[CrossRef] [PubMed]

Comput. J. (1)

M. J. D. Powell, “An efficient method for finding the minimum of a merit function of several variables without calculation of derivatives,” Comput. J. 7, 155–159 (1964).
[CrossRef]

Indian J. Phys. A (1)

G. K. M. Thutupalli, C. L. Nagendra, “Optical coatings for space applications,” Indian J. Phys. A 63, 661–756 (1989).

J. Phys. D (1)

R. E. Denton, R. D. Campbell, S. G. Tomlin, “The determination of optical constants of thin film coating materials,” J. Phys. D 5, 852–863 (1972).
[CrossRef]

J. Spacecr. Technol. (2)

C. L. Nagendra, G. K. M. Thutupalli, “Optical constants of infrared (IR) materials in the IR region,” J. Spacecr. Technol. 2, 7–17 (1992).

H. G. Shanbhogue, S. Ajith Kumar, M. N. Annapurna, S. N. Prasad, C. L. Nagendra, G. K. M. Thutupalli, “Visible and near IR antireflection coatings for advanced electro-optical systems,” J. Spacecr. Technol. 5, 16–25 (1995).

J. Vac. Sci. Technol. (1)

W. C. Herrmann, “E-beam deposition and characterization of reactively evaporated Ta2O5 for optical interference coatings,” J. Vac. Sci. Technol. 18, 1303–1305 (1981).
[CrossRef]

Opt. Acta (2)

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

O. S. Heavens, H. M. Liddell, “Least-squares method for automatic design of multilayers,” Opt. Acta 15, 129–138 (1968).

Opt. Eng. (2)

M. Cesro, G. Carter, “Ion-beam and dual ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[CrossRef]

R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films prepared by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

A. S. Valeev, “Determination of the optical constants of weakly absorbing thin films,” Opt. Spectrosc. 15, 269–274 (1963).

Thin Solid Films (2)

M. Cevro, “Ion-beam sputtering of (Ta2O5)1-X–(SiO2)1-X composite thin films,” Thin Solid Films 258, 91–103 (1995).
[CrossRef]

H. W. Zhang, S. X. Liu, “Optical composite film deposited by a double e-gun,” Thin Solid Films 209, 148–149 (1992).
[CrossRef]

Vacuum (1)

C. L. Nagendra, G. K. M. Thutupalli, “Optical constants of absorbing thin films,” Vacuum 31, 141–145 (1981).
[CrossRef]

Other (13)

O. Pierre, I. Asseman, J. Dauphin, “GOMOS: global ozone monitoring by occulation of stars,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 68–77 (1994).

A. J. Ratkowski, R. J. Huppi, M. P. Fetrow, “NIR/SWIR imaging spectrometer for light satellites,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 225–235 (1994).

M. N. Annapurna, C. L. Nagendra, G. K. M. Thutupalli, “Software package optosoft for design of optical coatings,” , 1988 (Indian Space Research Organization, Bangalore, India).

M. N. Annapurna, C. L. Nagendra, G. K. M. Thutupalli, “A new approach to the definition of merit function in numerical optimization methods,” presented at the Seventh International Symposium on Thin Films, The Indian Institute of Technology Delhi, The Indian Vacuum Society, New Delhi, India, 7–11 December 1987.

M. Born, E. Wolf, Progress in Optics (Pergamon, New York, 1970), p. 70.

E. Ritter, “Dielectric film materials for optical applications,” in Physics of Thin FilmsG. Hass, M. H. Francombe, R. K. Hoffman, eds. (Academic, New York, 1975), Vol. 8, pp. 1–49.

E. D. Pallick, ed., Handbook of Optical Constants of Solids, (Academic, New York, 1991), Vol. II, p. 899.

P. Davi, “High stability coatings for space optics: application to Silex program,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baumen, E. Sein, eds., Proc. SPIE2210, 498–505 (1994).
[CrossRef]

A. Thelen, R. Langfeld, “Coating design contest: antireflection coatings for lenses to be used with normal and infrared photographic film,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 552–601 (1992).
[CrossRef]

F. Lepretre, “Lens assemblies for multi spectral camera,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baumen, E. Sein, eds., Proc. SPIE2210, 587–600 (1994).
[CrossRef]

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), pp. 20 and 371.

P. J. Martin, R. P. Netterfield, “Optical thin films produced by ion-based techniques,” in Progress in Optics, E. Wolf, ed. (Permanon, New York, 1989), Vol. 23, pp. 115–182.

Optical Glass: Supplements and Amendments to Optical Glass Catalogue No. 3111e IX/80, Situation VIII (Schott Glass Technologies, Inc., Germany, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Spectral properties for Sub2 thin films deposited at 200 °C.

Fig. 2
Fig. 2

Dispersion curve and associated multiple solutions for Sub2 thin films.

Fig. 3
Fig. 3

Refractive index of Sub2 thin films deposited at different substrate temperatures.

Fig. 4
Fig. 4

(a) Reflectance characteristics of optimized designs on a hypothetical substrate; refractive index 1.618. (b) Reflectance characteristics of optimized designs on a hypothetical substrate; refractive index 1.754.

Fig. 5
Fig. 5

Variation of IRL R* with respect to SBWR for different AR coating designs.

Fig. 6
Fig. 6

NSD for AR coating designs with ripple Rmax.

Fig. 7
Fig. 7

Experimental results of a WB AR coating on SK16 glass and comparison with theory.

Fig. 8
Fig. 8

Experimental results of a LB AR coating on SK16 glass and comparison with theory.

Fig. 9
Fig. 9

Spectral reflectance and transmittance of a WB AR coating on KZFSN5 glass.

Fig. 10
Fig. 10

Absorption loss characteristics of AR coatings deposited at different substrate temperatures.

Fig. 11
Fig. 11

Absorption loss spectrum of bare KZFSN5 plates.

Fig. 12
Fig. 12

(a) Standard deviation in reflectance of AR coatings produced in consecutive intervals of batch production. (b) Standard deviation in transmittance of AR coatings produced in consecutive intervals of batch production.

Tables (6)

Tables Icon

Table 1 Dispersion Constants for Sub2 Films

Tables Icon

Table 2 Refractive Index of MgF2 Coatings on Different Glasses at Different Wavelengthsa

Tables Icon

Table 3 Optimized Thickness Parameters for Multilayer Antireflection Coatings

Tables Icon

Table 4 Summary of Optical Properties of Different Designs

Tables Icon

Table 5 Optical Properties of WB AR Coatings: Theory and Experiment Compareda

Tables Icon

Table 6 Optical properties of LB AR Coatings: Comparison with Theory and Experiment Compareda

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Tpeak=4.0 nf2nsnf2+ns2nf2+1.
nf4+Anf2+ns2=0,
nf=-A±ns+1.02-4nsTpeak×ns-1.02-4nsTpeak1/2/21/2
MF=Rt-RiWik1/k,
R*=λLλLRλdλλLλUdλ
ΔR=ΔRiλU-λLδλ,
δR/δλ=δR/δni, diδni, di/δλ.

Metrics