Abstract

We refined flexible waveguides previously developed for CO2 and Er:YAG laser radiation to transmit free-electron-laser (FEL) radiation. One can tune this laser over several segments of the radiation spectrum. This laser has a high peak power of as much as 10 MW with pulse energy of as much as 100 mJ. We made the waveguides of either Teflon or fused-silica tubes internally coated with metal and dielectric layers. We optimized the internal coatings specifications for transmission of various radiation wavelengths in the mid-IR range and enabled transmission of high-peak radiation. We performed experiments in three major FEL sites in the United States over a more than 1-year period when we measured and examined various characteristics of transmission. We used the analysis of these experiments as feedback to further improve these waveguides. The good preliminary results encourage us to invest more effort to further develop these waveguides until a suitable waveguide is obtained for this type of laser and make possible its introduction to the medical field where its characteristics can be exploited in surgical applications.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Brau, “Free electron lasers,” Science 239, 1115–1121 (1988).
    [Crossref] [PubMed]
  2. G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
    [Crossref] [PubMed]
  3. C. A. Brau, M. H. Mendenhall, “Vanderbilt University Free Electron Laser Center,” in Free-Electron Laser, Spectroscopy in Biology, Medicine and Materials Science, H. A. Schwettman, ed., Proc. SPIE1854, 2–10 (1993).
    [Crossref]
  4. D. Gal, A. Katzir, “Silver-halide optical fibers in medical applications,” IEEE J. Quantum Electron. QE-23, 1827–1835 (1987).
    [Crossref]
  5. R. Mossadegh, P. M. Kutty, N. J. Garito, D. C. Tran, “Fluoride glass property requirements for infrared bulk optics applications,” in Window and Dome Technologies and Materials, P. Klocek, ed., Proc. SPIE1112, 40–46 (1989).
    [Crossref]
  6. A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide infrared As2-x Se3+x glass fibers,” J. Non-Cryst. Solids 74, 57–66 (1985).
    [Crossref]
  7. J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid-core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
    [Crossref]
  8. G. N. Merberg, J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
    [Crossref] [PubMed]
  9. M. Levy, “Hollow flexible IR fibers,” in Optical Fibers in Medicine VII, A. Katzir, ed., Proc. SPIE1649, 63–65 (1992).
    [Crossref]
  10. P. Bhardwaj, O. J. Gregory, C. Morrow, G. Gu, K. Burbank, “Performance of a dielectric coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
    [Crossref]
  11. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [Crossref] [PubMed]
  12. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [Crossref] [PubMed]
  13. Y. Matsuura, J. A. Harrington, “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
    [Crossref] [PubMed]
  14. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [Crossref] [PubMed]
  15. Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
    [Crossref]
  16. T. Watanabe, H. Hiraga, Y. Abe, M. Miyagi, “Fabrication of silver hollow nickel waveguides with multiple inner dielectric layers by the outer-coating method,” Opt. Lett. 21, 1670–1672 (1996).
    [Crossref] [PubMed]
  17. N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, I. Gannot, “Hollow fiber waveguides and method of making same,” U.S. Patent4,930,863 (5June1990).
  18. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [Crossref] [PubMed]
  19. M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmission medium,” J. Appl. Phys. 72, 3878–3883 (1992).
    [Crossref]

1996 (1)

1995 (3)

1994 (2)

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
[Crossref] [PubMed]

1993 (3)

1992 (1)

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmission medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[Crossref]

1990 (1)

1988 (1)

C. A. Brau, “Free electron lasers,” Science 239, 1115–1121 (1988).
[Crossref] [PubMed]

1987 (1)

D. Gal, A. Katzir, “Silver-halide optical fibers in medical applications,” IEEE J. Quantum Electron. QE-23, 1827–1835 (1987).
[Crossref]

1985 (1)

A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide infrared As2-x Se3+x glass fibers,” J. Non-Cryst. Solids 74, 57–66 (1985).
[Crossref]

Abe, S.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[Crossref]

Abe, Y.

Abel, T.

Aizawa, M.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[Crossref]

Alaluf, M.

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmission medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[Crossref]

Bhardwaj, P.

P. Bhardwaj, O. J. Gregory, C. Morrow, G. Gu, K. Burbank, “Performance of a dielectric coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

Bornstein, A.

A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide infrared As2-x Se3+x glass fibers,” J. Non-Cryst. Solids 74, 57–66 (1985).
[Crossref]

Brau, C. A.

C. A. Brau, “Free electron lasers,” Science 239, 1115–1121 (1988).
[Crossref] [PubMed]

C. A. Brau, M. H. Mendenhall, “Vanderbilt University Free Electron Laser Center,” in Free-Electron Laser, Spectroscopy in Biology, Medicine and Materials Science, H. A. Schwettman, ed., Proc. SPIE1854, 2–10 (1993).
[Crossref]

Burbank, K.

P. Bhardwaj, O. J. Gregory, C. Morrow, G. Gu, K. Burbank, “Performance of a dielectric coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

Copeland, M.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Croitoru, N.

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmission medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[Crossref]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[Crossref] [PubMed]

A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide infrared As2-x Se3+x glass fibers,” J. Non-Cryst. Solids 74, 57–66 (1985).
[Crossref]

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, I. Gannot, “Hollow fiber waveguides and method of making same,” U.S. Patent4,930,863 (5June1990).

Dahan, R.

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmission medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[Crossref]

Davidson, J.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Diemer, S.

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid-core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[Crossref]

Dror, J.

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmission medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[Crossref]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[Crossref] [PubMed]

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, I. Gannot, “Hollow fiber waveguides and method of making same,” U.S. Patent4,930,863 (5June1990).

Edwards, G.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Fuss, W.

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid-core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[Crossref]

Gal, D.

D. Gal, A. Katzir, “Silver-halide optical fibers in medical applications,” IEEE J. Quantum Electron. QE-23, 1827–1835 (1987).
[Crossref]

Gannot, I.

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[Crossref] [PubMed]

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, I. Gannot, “Hollow fiber waveguides and method of making same,” U.S. Patent4,930,863 (5June1990).

Garito, N. J.

R. Mossadegh, P. M. Kutty, N. J. Garito, D. C. Tran, “Fluoride glass property requirements for infrared bulk optics applications,” in Window and Dome Technologies and Materials, P. Klocek, ed., Proc. SPIE1112, 40–46 (1989).
[Crossref]

Goldenberg, E.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, I. Gannot, “Hollow fiber waveguides and method of making same,” U.S. Patent4,930,863 (5June1990).

Gregory, O. J.

P. Bhardwaj, O. J. Gregory, C. Morrow, G. Gu, K. Burbank, “Performance of a dielectric coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

Gu, G.

P. Bhardwaj, O. J. Gregory, C. Morrow, G. Gu, K. Burbank, “Performance of a dielectric coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

Haisch, M.

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid-core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[Crossref]

Harrington, J. A.

Hering, P.

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid-core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[Crossref]

Hiraga, H.

Hirsch, J.

Johnson, B.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Jung, R.

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid-core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[Crossref]

Kato, Y.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[Crossref]

Katzir, A.

D. Gal, A. Katzir, “Silver-halide optical fibers in medical applications,” IEEE J. Quantum Electron. QE-23, 1827–1835 (1987).
[Crossref]

Kutty, P. M.

R. Mossadegh, P. M. Kutty, N. J. Garito, D. C. Tran, “Fluoride glass property requirements for infrared bulk optics applications,” in Window and Dome Technologies and Materials, P. Klocek, ed., Proc. SPIE1112, 40–46 (1989).
[Crossref]

Levy, M.

M. Levy, “Hollow flexible IR fibers,” in Optical Fibers in Medicine VII, A. Katzir, ed., Proc. SPIE1649, 63–65 (1992).
[Crossref]

Loga, R.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Maciunas, R.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Marom, E.

A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide infrared As2-x Se3+x glass fibers,” J. Non-Cryst. Solids 74, 57–66 (1985).
[Crossref]

Matsuura, Y.

Meister, J.

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid-core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[Crossref]

Mendenhall, M.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Mendenhall, M. H.

C. A. Brau, M. H. Mendenhall, “Vanderbilt University Free Electron Laser Center,” in Free-Electron Laser, Spectroscopy in Biology, Medicine and Materials Science, H. A. Schwettman, ed., Proc. SPIE1854, 2–10 (1993).
[Crossref]

Mendlovic, D.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, I. Gannot, “Hollow fiber waveguides and method of making same,” U.S. Patent4,930,863 (5June1990).

Merberg, G. N.

Miyagi, M.

Morrow, C.

P. Bhardwaj, O. J. Gregory, C. Morrow, G. Gu, K. Burbank, “Performance of a dielectric coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

Mossadegh, R.

R. Mossadegh, P. M. Kutty, N. J. Garito, D. C. Tran, “Fluoride glass property requirements for infrared bulk optics applications,” in Window and Dome Technologies and Materials, P. Klocek, ed., Proc. SPIE1112, 40–46 (1989).
[Crossref]

O’day, D.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Onodera, S.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[Crossref]

Osawa, M.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[Crossref]

Ossof, R.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Reinish, L.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Tran, D. C.

R. Mossadegh, P. M. Kutty, N. J. Garito, D. C. Tran, “Fluoride glass property requirements for infrared bulk optics applications,” in Window and Dome Technologies and Materials, P. Klocek, ed., Proc. SPIE1112, 40–46 (1989).
[Crossref]

Tribble, J.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Watanabe, T.

Werkhaven, J.

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Appl. Opt. (4)

Electron. Lett. (1)

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Gal, A. Katzir, “Silver-halide optical fibers in medical applications,” IEEE J. Quantum Electron. QE-23, 1827–1835 (1987).
[Crossref]

J. Appl. Phys. (1)

M. Alaluf, J. Dror, R. Dahan, N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmission medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[Crossref]

J. Non-Cryst. Solids (1)

A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide infrared As2-x Se3+x glass fibers,” J. Non-Cryst. Solids 74, 57–66 (1985).
[Crossref]

Mater. Lett. (1)

P. Bhardwaj, O. J. Gregory, C. Morrow, G. Gu, K. Burbank, “Performance of a dielectric coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

Nature (1)

G. Edwards, R. Loga, M. Copeland, L. Reinish, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossof, J. Tribble, J. Werkhaven, D. O’day, “Tissue ablation by free electron laser tuned to the amide II band,” Nature 371, 416–419 (1994).
[Crossref] [PubMed]

Opt. Lett. (3)

Science (1)

C. A. Brau, “Free electron lasers,” Science 239, 1115–1121 (1988).
[Crossref] [PubMed]

Other (5)

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, I. Gannot, “Hollow fiber waveguides and method of making same,” U.S. Patent4,930,863 (5June1990).

C. A. Brau, M. H. Mendenhall, “Vanderbilt University Free Electron Laser Center,” in Free-Electron Laser, Spectroscopy in Biology, Medicine and Materials Science, H. A. Schwettman, ed., Proc. SPIE1854, 2–10 (1993).
[Crossref]

R. Mossadegh, P. M. Kutty, N. J. Garito, D. C. Tran, “Fluoride glass property requirements for infrared bulk optics applications,” in Window and Dome Technologies and Materials, P. Klocek, ed., Proc. SPIE1112, 40–46 (1989).
[Crossref]

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid-core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[Crossref]

M. Levy, “Hollow flexible IR fibers,” in Optical Fibers in Medicine VII, A. Katzir, ed., Proc. SPIE1649, 63–65 (1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic drawing of a waveguide for IR laser transmission.

Fig. 2
Fig. 2

Attenuation as a function of bending radius at 6.445-µm laser wavelength for two differently optimized Teflon waveguides; waveguide length is 140 cm (performed at the Vanderbilt University FEL).

Fig. 3
Fig. 3

Comparison of attenuation as a function of bending radius of a 3-µm optimized Teflon waveguide; waveguide length is 100-cm (performed at the Stanford University FEL).

Fig. 4
Fig. 4

Comparison of attenuation as a function of bending radius at 3 µm, produced by Er:YAG and FEL; fused-silica waveguide length is 105 cm (performed at the Vanderbilt University FEL).

Fig. 5
Fig. 5

Pulse transmission by a 90°, 100 mm bent Teflon waveguide, shown in comparison with the FEL output pulse; wavelength is 6.04 µm (measured at the Stanford University FEL).

Fig. 6
Fig. 6

Attenuation as a function of radius of curvature for various energy inputs (measured at the Vanderbilt University FEL).

Fig. 7
Fig. 7

Contour plot of the FEL output beam shape at a wavelength of 6.445 µm.

Fig. 8
Fig. 8

Contour plot of the waveguide’s output beam shape at a wavelength of 6.445 µm.

Tables (1)

Tables Icon

Table 1 Beam Characteristics of Three Free-Electron-Laser Sites

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λL=λW1+eBWλW2πm0c22γ2,
t=0.134WAL-0.170,

Metrics