Abstract

A novel single-mode bend fiber-optic sensing principle is presented. The design makes use of the translucent protective sheath that encases a typical fiber as a means of locating the position of a small bend present on an otherwise straight fiber. We can simultaneously determine bend magnitude by measuring the reduction in the fiber’s core light. The theoretical model presented and the experimental results obtained are in excellent agreement, suggesting that a single-point sensor system is feasible with the proposed technique.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
    [CrossRef]
  2. W. A. Gambling, D. N. Payne, H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12, 567–569 (1976).
    [CrossRef]
  3. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66, 311–320 (1976).
    [CrossRef]
  4. W. A. Gambling, H. Hatsumura, C. M. Ragdale, R. A. Sammut, “Measurement of radiation loss in curved single-mode fibers,” Microwaves, Opt. Acoust. 2, 134–140 (1978).
    [CrossRef]
  5. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216–220 (1976).
    [CrossRef]
  6. See, for example, A. W. Snyder, J. D. Love, eds., Optical Waveguide Theory (Chapman & Hall, London, 1983).
  7. S. K. Yao, C. K. Asawa, G. F. Lipscomb, “Microbending loss in a single-mode fiber in the pure-bend loss regime,” Appl. Opt. 21, 3059–3060 (1982).
    [CrossRef] [PubMed]
  8. A. B. Sharma, A. H. Al-Ani, S. J. Halme, “Constant-curvature loss in monomode fibers: an experimental investigation,” Appl. Opt. 23, 3297–3301 (1984).
    [CrossRef] [PubMed]
  9. A. J. Harris, P. F. Castle, “Bend loss measurement on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34–40 (1986).
    [CrossRef]
  10. W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14, 130–132 (1978).
    [CrossRef]
  11. W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibers,” Opt. Quantum Electron. 11, 43–59 (1979).
    [CrossRef]
  12. K. Nagano, S. Kawakami, S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt. 17, 2080–2085 (1978).
    [CrossRef] [PubMed]
  13. I. Valiente, C. Vassallo, “New formalism for bending in coated single-mode optical fibers,” Electron. Lett. 25, 1544–1545 (1989).
    [CrossRef]
  14. N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech House, Norwood Mass., 1995).

1995 (1)

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

1989 (1)

I. Valiente, C. Vassallo, “New formalism for bending in coated single-mode optical fibers,” Electron. Lett. 25, 1544–1545 (1989).
[CrossRef]

1986 (1)

A. J. Harris, P. F. Castle, “Bend loss measurement on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

1984 (1)

1982 (1)

1979 (1)

W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibers,” Opt. Quantum Electron. 11, 43–59 (1979).
[CrossRef]

1978 (3)

K. Nagano, S. Kawakami, S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt. 17, 2080–2085 (1978).
[CrossRef] [PubMed]

W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14, 130–132 (1978).
[CrossRef]

W. A. Gambling, H. Hatsumura, C. M. Ragdale, R. A. Sammut, “Measurement of radiation loss in curved single-mode fibers,” Microwaves, Opt. Acoust. 2, 134–140 (1978).
[CrossRef]

1976 (3)

Al-Ani, A. H.

Asawa, C. K.

Berthold, J. W.

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

Castle, P. F.

A. J. Harris, P. F. Castle, “Bend loss measurement on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

Gambling, W. A.

W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibers,” Opt. Quantum Electron. 11, 43–59 (1979).
[CrossRef]

W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14, 130–132 (1978).
[CrossRef]

W. A. Gambling, H. Hatsumura, C. M. Ragdale, R. A. Sammut, “Measurement of radiation loss in curved single-mode fibers,” Microwaves, Opt. Acoust. 2, 134–140 (1978).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12, 567–569 (1976).
[CrossRef]

Halme, S. J.

Harris, A. J.

A. J. Harris, P. F. Castle, “Bend loss measurement on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

Hatsumura, H.

W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibers,” Opt. Quantum Electron. 11, 43–59 (1979).
[CrossRef]

W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14, 130–132 (1978).
[CrossRef]

W. A. Gambling, H. Hatsumura, C. M. Ragdale, R. A. Sammut, “Measurement of radiation loss in curved single-mode fibers,” Microwaves, Opt. Acoust. 2, 134–140 (1978).
[CrossRef]

Kashima, N.

N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech House, Norwood Mass., 1995).

Kawakami, S.

Lipscomb, G. F.

Marcuse, D.

Matsumura, H.

W. A. Gambling, D. N. Payne, H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12, 567–569 (1976).
[CrossRef]

Nagano, K.

Nishida, S.

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12, 567–569 (1976).
[CrossRef]

Ragdale, C. M.

W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibers,” Opt. Quantum Electron. 11, 43–59 (1979).
[CrossRef]

W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14, 130–132 (1978).
[CrossRef]

W. A. Gambling, H. Hatsumura, C. M. Ragdale, R. A. Sammut, “Measurement of radiation loss in curved single-mode fibers,” Microwaves, Opt. Acoust. 2, 134–140 (1978).
[CrossRef]

Sammut, R. A.

W. A. Gambling, H. Hatsumura, C. M. Ragdale, R. A. Sammut, “Measurement of radiation loss in curved single-mode fibers,” Microwaves, Opt. Acoust. 2, 134–140 (1978).
[CrossRef]

Sharma, A. B.

Valiente, I.

I. Valiente, C. Vassallo, “New formalism for bending in coated single-mode optical fibers,” Electron. Lett. 25, 1544–1545 (1989).
[CrossRef]

Vassallo, C.

I. Valiente, C. Vassallo, “New formalism for bending in coated single-mode optical fibers,” Electron. Lett. 25, 1544–1545 (1989).
[CrossRef]

Yao, S. K.

Appl. Opt. (3)

Electron. Lett. (3)

I. Valiente, C. Vassallo, “New formalism for bending in coated single-mode optical fibers,” Electron. Lett. 25, 1544–1545 (1989).
[CrossRef]

W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14, 130–132 (1978).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12, 567–569 (1976).
[CrossRef]

J. Lightwave Technol. (2)

A. J. Harris, P. F. Castle, “Bend loss measurement on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

J. Opt. Soc. Am. (2)

Microwaves, Opt. Acoust. (1)

W. A. Gambling, H. Hatsumura, C. M. Ragdale, R. A. Sammut, “Measurement of radiation loss in curved single-mode fibers,” Microwaves, Opt. Acoust. 2, 134–140 (1978).
[CrossRef]

Opt. Quantum Electron. (1)

W. A. Gambling, H. Hatsumura, C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibers,” Opt. Quantum Electron. 11, 43–59 (1979).
[CrossRef]

Other (2)

See, for example, A. W. Snyder, J. D. Love, eds., Optical Waveguide Theory (Chapman & Hall, London, 1983).

N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech House, Norwood Mass., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Pure bend loss mechanism; the shaded region of the mode profile in the bend is coupled to the surrounding medium and is no longer confined.

Fig. 2
Fig. 2

Transition loss mechanism; the mode profiles in the bent and the straight segments differ and result in a power loss when light propagates from one segment to the other.

Fig. 3
Fig. 3

Typical transmission loss versus bend arc length, showing the pure bend loss and the transition zone loss contributions. Figure is representative only.

Fig. 4
Fig. 4

Optical section of the experimental setup used to analyze the presence of the bend on the optical fiber.

Fig. 5
Fig. 5

Device used to bend the optical fiber accurately and repeatedly.

Fig. 6
Fig. 6

Detector section of the experimental setup used to measure the light levels from the fiber regions: D1, reference power, D2, core power; and D3, jacket power.

Fig. 7
Fig. 7

Log of the core power loss in decibels versus bend arc length. Run A has the smallest rod radius and run E has the largest rod radius.

Fig. 8
Fig. 8

Log of the core power loss in decibels versus bend arc length. Run F has the smallest rod radius and run I has the largest rod radius. The log curve for data run J is not shown.

Fig. 9
Fig. 9

Core power loss coefficient γ as a function of the effective fiber bend radius. Solid curves represent experimental data and dashed curves are the theoretical fit. The deviation observed for small bend radii is indicative of an incomplete theoretical model.

Fig. 10
Fig. 10

Representative buffer jacket power levels measured as a function of bend arc length, for data run B only. The parameter z represents the distance separating the bend location from the end of the sensing zone.

Fig. 11
Fig. 11

Relative power as a function of the bend location for several displacements of the MCR for run B.

Fig. 12
Fig. 12

Theoretical fitting of the curves in Fig. 11 with the double exponential decay sum. When they are compared, the fitting models the data very well, indicating that two ray classes are propagating in the buffer jacket after the bend region.

Fig. 13
Fig. 13

Relative magnitude of the coupling parameters a1 (squares) and a2 (diamonds) as a function of bend arc length for the entire run B.

Fig. 14
Fig. 14

Relative magnitude of the coupling coefficients b1 (squares) and b2 (diamonds) as a function of bend arc length for the entire run B.

Fig. 15
Fig. 15

Dependence of the coefficients a1 (squares), b1 (triangles), a2 (diamonds), and b2 (circles) for all data sets related to fiber 1. Values are relatively constant as a function of the bend radius rb.

Fig. 16
Fig. 16

Dependence of the coefficients a1 (squares), b1 (triangles), a2 (diamonds), and b2 (circles) for all data sets related to fiber 2. Values are relatively constant as a function of the bend radius rb.

Fig. 17
Fig. 17

Potential configuration for the single-point distributed microbend sensor.

Fig. 18
Fig. 18

Geometry used in the derivation of the bend arc length s versus MCR displacement and rod radii.

Tables (5)

Tables Icon

Table 1 Optical Properties of Single-Mode Fibers Used

Tables Icon

Table 2 Parameters for Individual Bending Runs Performed on the Two Types of Optical Fibers

Tables Icon

Table 3 Loss coefficients from data of Figs. 9 and 10 for Various Bend Radii Present on Both Fibers and Effective Radius from Theoretical Fit

Tables Icon

Table 4 Summary of Theoretically Fitted Propagation Loss Parameters of Eq. (7) to data from Each Bending Run

Tables Icon

Table 5 Averaged Values for Weighting Factors and Attenuation Coefficients for Both Fiber Types

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Prb, Φ=Po-Pc.
dPcds=γPs,
γ=PcPs,
γs=-lnPsPo,
Ps=Poexp-γs.
γ=1eνπrbaW31/2U2V2Kν-12Wexp-23W3rba3β2
eν=2ν=01ν0.
Pj=a1exp-b1z+a2 exp-b2z,
srb, MCR=4rb arccos2rbΔ2+rbΔ1/2rb2+Δ2/4+rbΔ,
Δ=8rb2+MCR2-4rbMCR1/2-2rb.
-10 logPco=γ0.23036s.
γ=0.23036Γ,
mode field radiuscore radius=0.65+1.619V-2/3+2.879V-6.
L=2rb+Δ.
Δ=4rb2+Y021/2-2rb.
Y2=Δ24+rbΔ1/2.
X1=rb2-Y121.2, Y1=2rb2Y2Y22+rb2.
r1·r3=rb2 cosφ,
r1·r3=X1xˆ+Y1yˆ·X3xˆ+Y3yˆ=2rb3Y2Y22+rb2.
srb, MCR=4rb arccos2rbΔ2+rbΔ1/2rb2+Δ2/4+rbΔ,
Δ=8rb2+MCR2-4rbMCR1/2-2rb.

Metrics