Abstract

The basic free-space optical communication system includes at least two satellites. To communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is to increase the satellite receiver beacon power. However, this solution requires increased power consumption and weight, both of which are disadvantageous in satellite development. Considering these facts, we derive a mathematical model of a communication system that adapts optimally the transmitter beam width and the transmitted power to the tracking system performance. Based on this model, we investigate the performance of a communication system with discrete element optical phased array transmitter telescope gain. An example for a practical communication system between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is presented. From the results of this research it can be seen that a four-element adaptive transmitter telescope is sufficient to compensate for vibration amplitude doubling. The benefits of the proposed model are less required transmitter power and improved communication system performance.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37(3), 252–260 (1989).
    [CrossRef]
  2. M. Witting, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 389–398.
  3. S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins, “The vibration environment on a satellite in orbit,” IEE Colloquium on High Accuracy Platform Control in Space (Institute of Electrical Engineers, London, 1993), pp. 12/1–6.
  4. K. Inagaki, Y. Karasawa, “Ultra high speed optical beam steering by optical phased array antenna,” in Free-Space Laser Communication Technologies VIII, G. S. Mercherle, ed., Proc. SPIE2699, 210–217 (1996).
  5. W. M. Neubert, W. R. Leeb, A. L. Scholts, “Experimental results on an optical array antenna for non-mechanical beam steering,” in Free-Space Laser Communication Technologies IV, D. L. Begley, D. B. Seery, eds. Proc. SPIE1635, 82–89 (1992).
    [CrossRef]
  6. D. R. Wight, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
    [CrossRef]
  7. K. L. Schultz, D. G. Kocher, J. A. Daley, J. R. Theriault, J. Spinks, S. Fisher, “Satellite vibration measurements with an autodyne CO2 laser radar,” Appl. Opt. 33, 2349–2355 (1994).
    [CrossRef] [PubMed]
  8. K. L. Schultz, S. Fisher, “Ground-based laser radar measurement of satellite vibrations,” Appl. Opt. 31, 7690–7695 (1992).
    [CrossRef] [PubMed]
  9. V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
    [CrossRef]
  10. S. Arnon, N. S. Kopeika are preparing the following paper for publication: “Free space satellite optical communication: adaptive information bandwidth to maintain constant bit error rate during periods of high satellite vibration amplitudes.”
  11. K. J. Held, J. D. Barry, “Precision pointing and tracking between satellite-borne optical systems,” Opt. Eng. 27, 325–333 (1988).
    [CrossRef]
  12. J. D. Barry, G. S. Mecherle, “Beam pointing error as a significant parameter for satellite borne, free-space optical communication systems,” Opt. Eng. 24, 1049–1054 (1985).
    [CrossRef]
  13. S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, 1995).
  14. B. E. A. Saleh, M. C. Teich, Fundamental of Photonics (Wiley, New York, 1991), pp. 644–695, 903–917.
    [CrossRef]
  15. C. A. Balanis, Antenna Theory Analysis and Design (Harper & Row, New York, 1982), Chap. 6, pp. 204–283.

1995 (1)

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

1994 (1)

1992 (1)

1991 (1)

D. R. Wight, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[CrossRef]

1989 (1)

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37(3), 252–260 (1989).
[CrossRef]

1988 (1)

K. J. Held, J. D. Barry, “Precision pointing and tracking between satellite-borne optical systems,” Opt. Eng. 27, 325–333 (1988).
[CrossRef]

1985 (1)

J. D. Barry, G. S. Mecherle, “Beam pointing error as a significant parameter for satellite borne, free-space optical communication systems,” Opt. Eng. 24, 1049–1054 (1985).
[CrossRef]

Arnon, S.

S. Arnon, N. S. Kopeika are preparing the following paper for publication: “Free space satellite optical communication: adaptive information bandwidth to maintain constant bit error rate during periods of high satellite vibration amplitudes.”

Balanis, C. A.

C. A. Balanis, Antenna Theory Analysis and Design (Harper & Row, New York, 1982), Chap. 6, pp. 204–283.

Barry, J. D.

K. J. Held, J. D. Barry, “Precision pointing and tracking between satellite-borne optical systems,” Opt. Eng. 27, 325–333 (1988).
[CrossRef]

J. D. Barry, G. S. Mecherle, “Beam pointing error as a significant parameter for satellite borne, free-space optical communication systems,” Opt. Eng. 24, 1049–1054 (1985).
[CrossRef]

Busch, T. E.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

Casey, W. L.

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, 1995).

Chen, C. C.

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37(3), 252–260 (1989).
[CrossRef]

Collins, P. P.

S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins, “The vibration environment on a satellite in orbit,” IEE Colloquium on High Accuracy Platform Control in Space (Institute of Electrical Engineers, London, 1993), pp. 12/1–6.

Daley, J. A.

Dyne, S. J. C.

S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins, “The vibration environment on a satellite in orbit,” IEE Colloquium on High Accuracy Platform Control in Space (Institute of Electrical Engineers, London, 1993), pp. 12/1–6.

Fisher, S.

Gardner, C. S.

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37(3), 252–260 (1989).
[CrossRef]

Held, K. J.

K. J. Held, J. D. Barry, “Precision pointing and tracking between satellite-borne optical systems,” Opt. Eng. 27, 325–333 (1988).
[CrossRef]

Inagaki, K.

K. Inagaki, Y. Karasawa, “Ultra high speed optical beam steering by optical phased array antenna,” in Free-Space Laser Communication Technologies VIII, G. S. Mercherle, ed., Proc. SPIE2699, 210–217 (1996).

Karasawa, Y.

K. Inagaki, Y. Karasawa, “Ultra high speed optical beam steering by optical phased array antenna,” in Free-Space Laser Communication Technologies VIII, G. S. Mercherle, ed., Proc. SPIE2699, 210–217 (1996).

Kocher, D. G.

Kopeika, N. S.

S. Arnon, N. S. Kopeika are preparing the following paper for publication: “Free space satellite optical communication: adaptive information bandwidth to maintain constant bit error rate during periods of high satellite vibration amplitudes.”

Lambert, S. G.

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, 1995).

Leeb, W. R.

W. M. Neubert, W. R. Leeb, A. L. Scholts, “Experimental results on an optical array antenna for non-mechanical beam steering,” in Free-Space Laser Communication Technologies IV, D. L. Begley, D. B. Seery, eds. Proc. SPIE1635, 82–89 (1992).
[CrossRef]

Mecherle, G. S.

J. D. Barry, G. S. Mecherle, “Beam pointing error as a significant parameter for satellite borne, free-space optical communication systems,” Opt. Eng. 24, 1049–1054 (1985).
[CrossRef]

Neubert, W. M.

W. M. Neubert, W. R. Leeb, A. L. Scholts, “Experimental results on an optical array antenna for non-mechanical beam steering,” in Free-Space Laser Communication Technologies IV, D. L. Begley, D. B. Seery, eds. Proc. SPIE1635, 82–89 (1992).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamental of Photonics (Wiley, New York, 1991), pp. 644–695, 903–917.
[CrossRef]

Scholts, A. L.

W. M. Neubert, W. R. Leeb, A. L. Scholts, “Experimental results on an optical array antenna for non-mechanical beam steering,” in Free-Space Laser Communication Technologies IV, D. L. Begley, D. B. Seery, eds. Proc. SPIE1635, 82–89 (1992).
[CrossRef]

Schultz, K. L.

Skormin, V. A.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

Spinks, J.

Tascillo, M. A.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamental of Photonics (Wiley, New York, 1991), pp. 644–695, 903–917.
[CrossRef]

Theriault, J. R.

Tunbridge, D. E. L.

S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins, “The vibration environment on a satellite in orbit,” IEE Colloquium on High Accuracy Platform Control in Space (Institute of Electrical Engineers, London, 1993), pp. 12/1–6.

M. Witting, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 389–398.

van Holtz, L.

M. Witting, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 389–398.

Vermeulen, H. C.

M. Witting, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 389–398.

Wight, D. R.

D. R. Wight, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[CrossRef]

Witting, M.

M. Witting, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 389–398.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. R. Wight, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[CrossRef]

IEEE Trans. Commun. (1)

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37(3), 252–260 (1989).
[CrossRef]

Opt. Eng. (3)

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

K. J. Held, J. D. Barry, “Precision pointing and tracking between satellite-borne optical systems,” Opt. Eng. 27, 325–333 (1988).
[CrossRef]

J. D. Barry, G. S. Mecherle, “Beam pointing error as a significant parameter for satellite borne, free-space optical communication systems,” Opt. Eng. 24, 1049–1054 (1985).
[CrossRef]

Other (8)

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, 1995).

B. E. A. Saleh, M. C. Teich, Fundamental of Photonics (Wiley, New York, 1991), pp. 644–695, 903–917.
[CrossRef]

C. A. Balanis, Antenna Theory Analysis and Design (Harper & Row, New York, 1982), Chap. 6, pp. 204–283.

S. Arnon, N. S. Kopeika are preparing the following paper for publication: “Free space satellite optical communication: adaptive information bandwidth to maintain constant bit error rate during periods of high satellite vibration amplitudes.”

M. Witting, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 389–398.

S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins, “The vibration environment on a satellite in orbit,” IEE Colloquium on High Accuracy Platform Control in Space (Institute of Electrical Engineers, London, 1993), pp. 12/1–6.

K. Inagaki, Y. Karasawa, “Ultra high speed optical beam steering by optical phased array antenna,” in Free-Space Laser Communication Technologies VIII, G. S. Mercherle, ed., Proc. SPIE2699, 210–217 (1996).

W. M. Neubert, W. R. Leeb, A. L. Scholts, “Experimental results on an optical array antenna for non-mechanical beam steering,” in Free-Space Laser Communication Technologies IV, D. L. Begley, D. B. Seery, eds. Proc. SPIE1635, 82–89 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optimum transmitter telescope gain multiplied by σθ 2 as a function of BER.

Fig. 2
Fig. 2

Optimum transmitter power multiplied by K 1 and divided by σθ 2 as a function of the BER.

Fig. 3
Fig. 3

Transmitter telescope gain as a function of σθ 2. The discrete element phased array for one, three, and six elements is marked by a solid line. Continuous gain is marked by a dotted curve.

Fig. 4
Fig. 4

Phased array transmitter power minus continuous gain transmitter power. One-element phased array transmitter power is marked by a dotted curve. Three-element phased array transmitter power is marked by a dashed curve. Six-element phased array transmitter power is marked by a solid curve.

Fig. 5
Fig. 5

R pa as a function of the number of phased array elements: ○, R pa for a BER of 10-5; *, R pa for a BER of 10-7; +, R pa for a BER of 10-9.

Tables (1)

Tables Icon

Table 1 Parameters and Their Values

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

fθV=12πσVexp-θV22σV2,
fθH=12πσHexp-θH22σH2,
θ=θV2+θH2.
σV=σH=σθ.
fθ=θσθexp-θ22σθ2.
σθ=1SFSNR,
PR=K1K2PTGT,
K1=ηTηRλ4πZ2 GR,
K2=exp-GTθ2,
GTπDTλ2,
GR=πDRλ2,
BER1201-erfμ1θ-μ0θ2σ1θ+σ0θfθdθ,
erfx=2π0xexp-y2dy.
μ0θ=0.
μ1θ=PTGTC1 exp-GTθ2.
σ1θ=σ01+PTGTC2 exp-GTθ21/2,
BER1201-erfQθfθdθ,
Qθ=μθσ1θ+σ0=PTGTC1 exp-GTθ2σ01+1+PTGTC2 exp-GTθ21/2.
BER1201-erfQ2σθ2Uexp-UdU.
GTBERGT×1201-erfQ2σθ2Uexp-UdU.
0VGT, PT, Uexp-Q2Uσθ22exp-UdU=0,
VGT, PT, U=GTQ2Uσθ2,
VGT, PT, U=C12σ01+h22×PTL1-h1+PTGTGTL×1+h2-C2PTGTL2h2,
h1=2GTσθ2U,
L=exp-h1,
h2=1+C2GTLPT1/2.
VGT, PT, U=L1-h11+h21+h2-C2PTGTL2h2.
GT2=GTσθ2σθ22.
PT2=PTσθ2σθ22.
GTpam, n=mGToptimum maxn1mn,
DTpam, n=λπmn GToptimum max.
GTpax, nGToptimumGTpax+1, n1×+1nGToptimum maxotherwise.
Rpa=i=1sPTpai, nΔσθ2ii=1sPToptimumiΔσθ2i,
σ02=σTH2+σDC2+σBG2.
σBG2=2q2ηPBhνFMM2B,
FM=KeffM+1-Keff2-1M,
σDC2=2qIDFMM2B,
σTH2=4kBBTeRL,
R=M1ηhν.
C1=K1R.
C2=2K1q2ηFMM2Bhνσθ2=2FMMBqσθ2 C1.

Metrics