Abstract

We performed solar absorption measurements of OH in the UV using a Fourier-transform spectrometer (FTS). The experiments were carried out in the high Arctic at Ny-Ålesund (79 °N, 12 °E) during the summer of 1996. We accomplished the analysis in two ways: (1) by studying single solar-absorption spectra recorded in the middle of the solar disk and (2) by utilizing the Doppler shift of two spectra, recorded on the east and west sides of the solar disk. The results of both analysis methods agree and give total columns of approximately 6 × 1013 molecules cm-2 for solar zenith angles of 60°.

To find out the main noise contribution in the spectra, we compared the measured and calculated signal-to-noise ratios (SNR’s). During clear-sky conditions the photon noise determines the total SNR. However, because a FTS is extremely sensitive to source fluctuations, conditions that were already slightly cloudy increased the scintillation noise, preventing OH analysis. The noise contribution caused by the instrumental sampling process itself was found to be negligible; even through two sampling positions had to be interpolated between the laser zero crossings.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Brown, C. B. Farmer, C. P. Rinsland, R. Zander, “Remote sensing of the atmosphere by high resolution infrared absorption spectroscopy,” in Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, K. N. Rao, A. Weber, eds. (Academic, New York, 1992), Chap. 2, pp. 97–151.
  2. S. Solomon, G. H. Mount, R. W. Sanders, A. L. Schmeltekopf, “Visible spectroscopy at McMurdo Station, Antarctica 2: observations of OClO,” J. Geophys. Res. 92, 8329–8338 (1987).
    [CrossRef]
  3. A. C. Vandaele, M. Carleer, R. Colin, P. Simon, “Long path monitoring of tropospheric O3, NO2, H2CO, and SO2,” in Proceedings of the Quadrennial Ozone Symposium, 1992, R. D. Hudson, ed., NASA Conf. Publ. 3266 (NASA, Greenbelt, Md., 1994), pp. 166–169.
  4. J. Notholt, K. Pfeilsticker, “Stratospheric trace gas measurements in the near UV and visible spectral range with the sun as light source using a Fourier transform spectrometer,” Appl. Spectrosc. 50, 583–587 (1996).
    [CrossRef]
  5. M. Nicolet, “Introduction to stratospheric ozone,” Rev. Geophys. Space Phys. 13, 593–605 (1975).
    [CrossRef]
  6. J. G. Anderson, “Rocket measurements of OH in the mesosphere,” J. Geophys. Res. 76, 7820–7824 (1971).
    [CrossRef]
  7. J. G. Anderson, “The absolute concentration of OH(X2Π) in the Earth’s stratosphere,” Geophys. Res. Lett. 3, 165–168 (1976).
    [CrossRef]
  8. C. R. Burnett, E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the Earth’s atmosphere,” J. Geophys. Res. 86, 5185–5202 (1981).
    [CrossRef]
  9. C. R. Burnett, E. B. Burnett, “OH Pepsios,” Appl. Opt. 22, 2887–2892 (1983).
    [CrossRef] [PubMed]
  10. J. E. Mack, E. D. McNutt, F. L. Roesler, R. Chabbal, “The pepsios purely interferometric high-resolution scanning spectrometer,” Appl. Opt. 2, 873–885 (1963).
  11. N. Iwagami, S. Inomata, T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1–15 (1995).
    [CrossRef]
  12. J. Notholt, “The moon as light source for FTIR measurements of stratospheric trace gases during the polar night: application for HNO3 in the Arctic,” J. Geophys. Res. 99, 3607–3614 (1994).
    [CrossRef]
  13. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).
  14. R. H. Norton, R. Beer, “New apodizing functions for Fourier spectrometry,” J. Opt. Soc. Am. 66, 259–263 (1976).
    [CrossRef]
  15. M. Zeilik, S. A. Gregory, E. v. P. Smith, Introductory to Astronomy and Astrophysics (Saunders, New York, 1992).
  16. C. R. Burnett, K. R. Minschwaner, E. B. Burnett, “Vertical column abundance of atmospheric hydroxyl from 26°, 40°, and 65°N,” J. Geophys. Res. 93, 5241–5253 (1988).
    [CrossRef]
  17. R. L. Kurucz, I. Furenlid, J. Brault, L. Testerman, Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory Atlas No. 1 (Harvard U. Press, Cambridge, Mass., 1984).
  18. R. Beer, Remote Sensing by Fourier Transform Spectrometry (Wiley, New York, 1992).

1996

1995

N. Iwagami, S. Inomata, T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1–15 (1995).
[CrossRef]

1994

J. Notholt, “The moon as light source for FTIR measurements of stratospheric trace gases during the polar night: application for HNO3 in the Arctic,” J. Geophys. Res. 99, 3607–3614 (1994).
[CrossRef]

1988

C. R. Burnett, K. R. Minschwaner, E. B. Burnett, “Vertical column abundance of atmospheric hydroxyl from 26°, 40°, and 65°N,” J. Geophys. Res. 93, 5241–5253 (1988).
[CrossRef]

1987

S. Solomon, G. H. Mount, R. W. Sanders, A. L. Schmeltekopf, “Visible spectroscopy at McMurdo Station, Antarctica 2: observations of OClO,” J. Geophys. Res. 92, 8329–8338 (1987).
[CrossRef]

1983

1981

C. R. Burnett, E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the Earth’s atmosphere,” J. Geophys. Res. 86, 5185–5202 (1981).
[CrossRef]

1976

J. G. Anderson, “The absolute concentration of OH(X2Π) in the Earth’s stratosphere,” Geophys. Res. Lett. 3, 165–168 (1976).
[CrossRef]

R. H. Norton, R. Beer, “New apodizing functions for Fourier spectrometry,” J. Opt. Soc. Am. 66, 259–263 (1976).
[CrossRef]

1975

M. Nicolet, “Introduction to stratospheric ozone,” Rev. Geophys. Space Phys. 13, 593–605 (1975).
[CrossRef]

1971

J. G. Anderson, “Rocket measurements of OH in the mesosphere,” J. Geophys. Res. 76, 7820–7824 (1971).
[CrossRef]

1963

Anderson, J. G.

J. G. Anderson, “The absolute concentration of OH(X2Π) in the Earth’s stratosphere,” Geophys. Res. Lett. 3, 165–168 (1976).
[CrossRef]

J. G. Anderson, “Rocket measurements of OH in the mesosphere,” J. Geophys. Res. 76, 7820–7824 (1971).
[CrossRef]

Beer, R.

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).

Brault, J.

R. L. Kurucz, I. Furenlid, J. Brault, L. Testerman, Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory Atlas No. 1 (Harvard U. Press, Cambridge, Mass., 1984).

Brown, L. R.

L. R. Brown, C. B. Farmer, C. P. Rinsland, R. Zander, “Remote sensing of the atmosphere by high resolution infrared absorption spectroscopy,” in Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, K. N. Rao, A. Weber, eds. (Academic, New York, 1992), Chap. 2, pp. 97–151.

Burnett, C. R.

C. R. Burnett, K. R. Minschwaner, E. B. Burnett, “Vertical column abundance of atmospheric hydroxyl from 26°, 40°, and 65°N,” J. Geophys. Res. 93, 5241–5253 (1988).
[CrossRef]

C. R. Burnett, E. B. Burnett, “OH Pepsios,” Appl. Opt. 22, 2887–2892 (1983).
[CrossRef] [PubMed]

C. R. Burnett, E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the Earth’s atmosphere,” J. Geophys. Res. 86, 5185–5202 (1981).
[CrossRef]

Burnett, E. B.

C. R. Burnett, K. R. Minschwaner, E. B. Burnett, “Vertical column abundance of atmospheric hydroxyl from 26°, 40°, and 65°N,” J. Geophys. Res. 93, 5241–5253 (1988).
[CrossRef]

C. R. Burnett, E. B. Burnett, “OH Pepsios,” Appl. Opt. 22, 2887–2892 (1983).
[CrossRef] [PubMed]

C. R. Burnett, E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the Earth’s atmosphere,” J. Geophys. Res. 86, 5185–5202 (1981).
[CrossRef]

Carleer, M.

A. C. Vandaele, M. Carleer, R. Colin, P. Simon, “Long path monitoring of tropospheric O3, NO2, H2CO, and SO2,” in Proceedings of the Quadrennial Ozone Symposium, 1992, R. D. Hudson, ed., NASA Conf. Publ. 3266 (NASA, Greenbelt, Md., 1994), pp. 166–169.

Chabbal, R.

Colin, R.

A. C. Vandaele, M. Carleer, R. Colin, P. Simon, “Long path monitoring of tropospheric O3, NO2, H2CO, and SO2,” in Proceedings of the Quadrennial Ozone Symposium, 1992, R. D. Hudson, ed., NASA Conf. Publ. 3266 (NASA, Greenbelt, Md., 1994), pp. 166–169.

Farmer, C. B.

L. R. Brown, C. B. Farmer, C. P. Rinsland, R. Zander, “Remote sensing of the atmosphere by high resolution infrared absorption spectroscopy,” in Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, K. N. Rao, A. Weber, eds. (Academic, New York, 1992), Chap. 2, pp. 97–151.

Furenlid, I.

R. L. Kurucz, I. Furenlid, J. Brault, L. Testerman, Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory Atlas No. 1 (Harvard U. Press, Cambridge, Mass., 1984).

Gregory, S. A.

M. Zeilik, S. A. Gregory, E. v. P. Smith, Introductory to Astronomy and Astrophysics (Saunders, New York, 1992).

Inomata, S.

N. Iwagami, S. Inomata, T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1–15 (1995).
[CrossRef]

Iwagami, N.

N. Iwagami, S. Inomata, T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1–15 (1995).
[CrossRef]

Kurucz, R. L.

R. L. Kurucz, I. Furenlid, J. Brault, L. Testerman, Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory Atlas No. 1 (Harvard U. Press, Cambridge, Mass., 1984).

Mack, J. E.

McNutt, E. D.

Minschwaner, K. R.

C. R. Burnett, K. R. Minschwaner, E. B. Burnett, “Vertical column abundance of atmospheric hydroxyl from 26°, 40°, and 65°N,” J. Geophys. Res. 93, 5241–5253 (1988).
[CrossRef]

Mount, G. H.

S. Solomon, G. H. Mount, R. W. Sanders, A. L. Schmeltekopf, “Visible spectroscopy at McMurdo Station, Antarctica 2: observations of OClO,” J. Geophys. Res. 92, 8329–8338 (1987).
[CrossRef]

Nicolet, M.

M. Nicolet, “Introduction to stratospheric ozone,” Rev. Geophys. Space Phys. 13, 593–605 (1975).
[CrossRef]

Norton, R. H.

Notholt, J.

J. Notholt, K. Pfeilsticker, “Stratospheric trace gas measurements in the near UV and visible spectral range with the sun as light source using a Fourier transform spectrometer,” Appl. Spectrosc. 50, 583–587 (1996).
[CrossRef]

J. Notholt, “The moon as light source for FTIR measurements of stratospheric trace gases during the polar night: application for HNO3 in the Arctic,” J. Geophys. Res. 99, 3607–3614 (1994).
[CrossRef]

Ogawa, T.

N. Iwagami, S. Inomata, T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1–15 (1995).
[CrossRef]

Pfeilsticker, K.

Rinsland, C. P.

L. R. Brown, C. B. Farmer, C. P. Rinsland, R. Zander, “Remote sensing of the atmosphere by high resolution infrared absorption spectroscopy,” in Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, K. N. Rao, A. Weber, eds. (Academic, New York, 1992), Chap. 2, pp. 97–151.

Roesler, F. L.

Sanders, R. W.

S. Solomon, G. H. Mount, R. W. Sanders, A. L. Schmeltekopf, “Visible spectroscopy at McMurdo Station, Antarctica 2: observations of OClO,” J. Geophys. Res. 92, 8329–8338 (1987).
[CrossRef]

Schmeltekopf, A. L.

S. Solomon, G. H. Mount, R. W. Sanders, A. L. Schmeltekopf, “Visible spectroscopy at McMurdo Station, Antarctica 2: observations of OClO,” J. Geophys. Res. 92, 8329–8338 (1987).
[CrossRef]

Simon, P.

A. C. Vandaele, M. Carleer, R. Colin, P. Simon, “Long path monitoring of tropospheric O3, NO2, H2CO, and SO2,” in Proceedings of the Quadrennial Ozone Symposium, 1992, R. D. Hudson, ed., NASA Conf. Publ. 3266 (NASA, Greenbelt, Md., 1994), pp. 166–169.

Smith, E. v. P.

M. Zeilik, S. A. Gregory, E. v. P. Smith, Introductory to Astronomy and Astrophysics (Saunders, New York, 1992).

Solomon, S.

S. Solomon, G. H. Mount, R. W. Sanders, A. L. Schmeltekopf, “Visible spectroscopy at McMurdo Station, Antarctica 2: observations of OClO,” J. Geophys. Res. 92, 8329–8338 (1987).
[CrossRef]

Testerman, L.

R. L. Kurucz, I. Furenlid, J. Brault, L. Testerman, Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory Atlas No. 1 (Harvard U. Press, Cambridge, Mass., 1984).

Vandaele, A. C.

A. C. Vandaele, M. Carleer, R. Colin, P. Simon, “Long path monitoring of tropospheric O3, NO2, H2CO, and SO2,” in Proceedings of the Quadrennial Ozone Symposium, 1992, R. D. Hudson, ed., NASA Conf. Publ. 3266 (NASA, Greenbelt, Md., 1994), pp. 166–169.

Zander, R.

L. R. Brown, C. B. Farmer, C. P. Rinsland, R. Zander, “Remote sensing of the atmosphere by high resolution infrared absorption spectroscopy,” in Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, K. N. Rao, A. Weber, eds. (Academic, New York, 1992), Chap. 2, pp. 97–151.

Zeilik, M.

M. Zeilik, S. A. Gregory, E. v. P. Smith, Introductory to Astronomy and Astrophysics (Saunders, New York, 1992).

Appl. Opt.

Appl. Spectrosc.

Geophys. Res. Lett.

J. G. Anderson, “The absolute concentration of OH(X2Π) in the Earth’s stratosphere,” Geophys. Res. Lett. 3, 165–168 (1976).
[CrossRef]

J. Atmos. Chem.

N. Iwagami, S. Inomata, T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1–15 (1995).
[CrossRef]

J. Geophys. Res.

J. Notholt, “The moon as light source for FTIR measurements of stratospheric trace gases during the polar night: application for HNO3 in the Arctic,” J. Geophys. Res. 99, 3607–3614 (1994).
[CrossRef]

S. Solomon, G. H. Mount, R. W. Sanders, A. L. Schmeltekopf, “Visible spectroscopy at McMurdo Station, Antarctica 2: observations of OClO,” J. Geophys. Res. 92, 8329–8338 (1987).
[CrossRef]

C. R. Burnett, E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the Earth’s atmosphere,” J. Geophys. Res. 86, 5185–5202 (1981).
[CrossRef]

C. R. Burnett, K. R. Minschwaner, E. B. Burnett, “Vertical column abundance of atmospheric hydroxyl from 26°, 40°, and 65°N,” J. Geophys. Res. 93, 5241–5253 (1988).
[CrossRef]

J. G. Anderson, “Rocket measurements of OH in the mesosphere,” J. Geophys. Res. 76, 7820–7824 (1971).
[CrossRef]

J. Opt. Soc. Am.

Rev. Geophys. Space Phys.

M. Nicolet, “Introduction to stratospheric ozone,” Rev. Geophys. Space Phys. 13, 593–605 (1975).
[CrossRef]

Other

L. R. Brown, C. B. Farmer, C. P. Rinsland, R. Zander, “Remote sensing of the atmosphere by high resolution infrared absorption spectroscopy,” in Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, K. N. Rao, A. Weber, eds. (Academic, New York, 1992), Chap. 2, pp. 97–151.

A. C. Vandaele, M. Carleer, R. Colin, P. Simon, “Long path monitoring of tropospheric O3, NO2, H2CO, and SO2,” in Proceedings of the Quadrennial Ozone Symposium, 1992, R. D. Hudson, ed., NASA Conf. Publ. 3266 (NASA, Greenbelt, Md., 1994), pp. 166–169.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).

M. Zeilik, S. A. Gregory, E. v. P. Smith, Introductory to Astronomy and Astrophysics (Saunders, New York, 1992).

R. L. Kurucz, I. Furenlid, J. Brault, L. Testerman, Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory Atlas No. 1 (Harvard U. Press, Cambridge, Mass., 1984).

R. Beer, Remote Sensing by Fourier Transform Spectrometry (Wiley, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Solar absorption spectrum recorded at a resolution of 0.12 cm-1 together with a simulated terrestrial OH spectrum. Note the different scale for the simulated spectra.

Fig. 2
Fig. 2

First derivative of the two spectra displayed in Fig. 1. Note the different scale for the simulated spectrum.

Fig. 3
Fig. 3

Second derivative of the two spectra displayed in Fig. 1.

Fig. 4
Fig. 4

Solar absorption spectra recorded at a resolution of 0.12 cm-1 on the east and west sides of the solar disk.

Fig. 5
Fig. 5

Curve (a) gives the ratio of the two atmospheric spectra, in which one was shifted according to the Doppler shift. Curve (b) gives the simulated terrestrial OH spectrum, which was constructed by building the ratio of an unshifted and a shifted reference spectrum.

Fig. 6
Fig. 6

Total derived columns plotted as a function of sec α. The results are plotted separately for the P 1(1) and Q 1(3) lines for the two different analysis methods: the single spectral analysis and the Doppler-shifted spectral analysis.

Fig. 7
Fig. 7

Solar absorption spectrum, recorded on 1 July 1996, at a resolution of 0.094 cm-1 within 8 min.

Tables (1)

Tables Icon

Table 1 Measured and Calculated SNR’s for Spectral Recorded on Three Days during Clear-Sky Conditionsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δν=ν10-6-2.12-1.69 sin θ-1.55 cos ϕ sin δsin α,
SNR=δνΦn1tn2t+Δνn1t1/2+sΔνn1t,
SNR1SNR2=Δνn1t21/2+sΔνn1t2Δνn1t11/2+sΔνn1t1,

Metrics