Abstract

We have measured the absorption coefficient of pure and salt water at 15 wavelengths in the visible and near-infrared regions of the spectrum using WETLabs nine-wavelength absorption and attenuation meters and a three-wavelength absorption meter. The water temperature was varied between 15 and 30 °C, and the salinity was varied between 0 and 38 PSU to study the effects of these parameters on the absorption coefficient of liquid water. In the near-infrared portion of the spectrum the absorption coefficient of water was confirmed to be highly dependent on temperature. In the visible region the temperature dependence was found to be less than 0.001 m-1/ °C except for a small region around 610 nm. The same results were found for the temperature dependence of a saltwater solution. After accounting for index-of-refraction effects, the salinity dependence at visible wavelengths is negligible. Salinity does appear to be important in determining the absorption coefficient of water in the near-infrared region. At 715 nm, for example, the salinity dependence was -0.00027 m-1/PSU. Field measurements support the temperature and salinity dependencies found in the laboratory both in the near infrared and at shorter wavelengths. To make estimates of the temperature dependence in wavelength regions for which we did not make measurements we used a series of Gaussian curves that were fit to the absorption spectrum in the visible region of the spectrum. The spectral dependence on temperature was then estimated based on multiplying the Gaussians by a fitting factor.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Buiteveldm, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
    [CrossRef]
  2. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, London, 1974), pp. 1–24.
  3. D. H. Everett, “How much do we really know about water?” in Water and Aqueous Solutions, Vol. 37, G. W. Neilson, J. E. Enderby, eds. (Hilger, London, 1985), pp. 331–342.
  4. N. K. Højerslev, I. Trabjerg, “A new perspective for remote sensing measurements of plankton pigments and water quality,” (University of Copenhagen,Institute of Physical Oceanography, Copenhagen, 1990).
  5. I. Trabjerg, N. K. Højerslev, “Temperature influence on light absorption by fresh water and seawater in the visible and near-infrared spectrum,” Appl. Opt. 35, 2653–2658 (1996).
    [CrossRef] [PubMed]
  6. W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
    [CrossRef]
  7. W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
    [CrossRef]
  8. S. A. Green, N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903–1916 (1994).
    [CrossRef]
  9. W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 597–604 (1994).
    [CrossRef]
  10. M. Ravisankar, A. T. Reghunath, K. Sathianandan, V. P. N. Nampoori, “Effect of dissolved NaCl MgCl2, and Na2SO4 in seawater on the optical attenuation in the region from 430 to 630 nm,” Appl. Opt. 27, 3887–3894 (1988).
    [CrossRef] [PubMed]
  11. S. A. Sullivan, “Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum,” J. Opt. Soc. Am. 53, 962–968 (1963).
    [CrossRef]
  12. J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 25, 771–779 (1925).
    [CrossRef]
  13. W. Luck, “Beitrag zur Assoziation des flussigen Wassers. I. Die Temperaturabhangigkeit der Ultrarotbanden des Wassers,” Ber. Bunsenges. Physik. Chem. 67, 186–189 (1963).
  14. W. C. Waggener, A. J. Weinberger, R. W. Stoughton, “The absorption spectrum of H2O and D2O in the near infrared region as a function of temperature from -20° to 250 °C,” (Atomic Energy Commission, Washington, D.C., 1964).
  15. J. Lin, C. W. Brown, “Near-IR spectroscopic measurement of seawater salinity,” Environ. Sci. Technol. 27, 1611–1615 (1993).
    [CrossRef]
  16. A. D. Buckingham, “The structure and properties of a water molecule,” in Water and Aqueous Solutions, Vol. ●, G. W. Neilson, J. E. Enderby, eds. (Hilger, Bristol, 1986), pp. 1–10.
  17. J. Dera, Marine Physics (Elsevier, Amsterdam, 1992).
  18. R. M. Pope, “Optical absorption of pure water and seawater using the integrating cavity absorption meter,” Ph.D. dissertation (Texas A&M College, College Station, Tex., 1993).
  19. T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980).
    [CrossRef]
  20. M. Halmann, I. Platzner, “Temperature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem. 70, 580–581 (1966).
    [CrossRef]
  21. L. P. Boivin, W. F. Davidson, R. S. Storey, D. Sinclair, E. D. Earle, “Determination of the attenuation coefficients of visible and ultraviolet radiation in heavy water,” Appl. Opt. 25, 877–882 (1986).
    [CrossRef] [PubMed]
  22. C. Moore, “In situ, biochemical, oceanic, optical meters,” Sea Technol. 35, 10–16 (1994).
  23. R. W. Austin, G. Halikas, “The index of refraction of seawater,” (Scripps Institution of Oceanography, San Diego, Calif., 1976).
  24. C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
    [CrossRef]
  25. J. R. V. Zaneveld, J. C. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
    [CrossRef]
  26. K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).
  27. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  28. A. C. Tam, C. K. N. Patel, “Optical absorptions of light and heavy water by laser optoacoustic spectroscopy,” Appl. Opt. 18, 3348–3358 (1979).
    [CrossRef] [PubMed]
  29. W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
    [CrossRef]
  30. M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 1059–1077.
  31. M. R. Querry, P. G. Cary, R. C. Waring, “Split-pulse laser method for measuring attenuation coefficients of transparent liquids: application to deionized filtered water in the visible region,” Appl. Opt. 17, 3587–3592 (1978).
    [CrossRef] [PubMed]
  32. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  33. J. B. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–222 (1963).
    [CrossRef]

1996 (1)

1995 (1)

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

1994 (2)

S. A. Green, N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903–1916 (1994).
[CrossRef]

C. Moore, “In situ, biochemical, oceanic, optical meters,” Sea Technol. 35, 10–16 (1994).

1993 (2)

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

J. Lin, C. W. Brown, “Near-IR spectroscopic measurement of seawater salinity,” Environ. Sci. Technol. 27, 1611–1615 (1993).
[CrossRef]

1989 (1)

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

1988 (1)

1986 (1)

1981 (1)

1980 (1)

T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980).
[CrossRef]

1979 (1)

1978 (1)

1973 (1)

1968 (1)

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

1966 (1)

M. Halmann, I. Platzner, “Temperature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem. 70, 580–581 (1966).
[CrossRef]

1963 (3)

W. Luck, “Beitrag zur Assoziation des flussigen Wassers. I. Die Temperaturabhangigkeit der Ultrarotbanden des Wassers,” Ber. Bunsenges. Physik. Chem. 67, 186–189 (1963).

J. B. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–222 (1963).
[CrossRef]

S. A. Sullivan, “Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum,” J. Opt. Soc. Am. 53, 962–968 (1963).
[CrossRef]

1925 (1)

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 25, 771–779 (1925).
[CrossRef]

Austin, R. W.

R. W. Austin, G. Halikas, “The index of refraction of seawater,” (Scripps Institution of Oceanography, San Diego, Calif., 1976).

Baker, K. S.

Bayly, J. B.

J. B. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–222 (1963).
[CrossRef]

Blough, N. V.

S. A. Green, N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903–1916 (1994).
[CrossRef]

Boivin, L. P.

Brown, C. W.

J. Lin, C. W. Brown, “Near-IR spectroscopic measurement of seawater salinity,” Environ. Sci. Technol. 27, 1611–1615 (1993).
[CrossRef]

Buckingham, A. D.

A. D. Buckingham, “The structure and properties of a water molecule,” in Water and Aqueous Solutions, Vol. ●, G. W. Neilson, J. E. Enderby, eds. (Hilger, Bristol, 1986), pp. 1–10.

Buiteveldm, H.

H. Buiteveldm, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Carder, K. L.

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Cary, P. G.

Cleveland, J. S.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Collins, J. R.

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 25, 771–779 (1925).
[CrossRef]

Davidson, W. F.

Dera, J.

J. Dera, Marine Physics (Elsevier, Amsterdam, 1992).

Donze, M.

H. Buiteveldm, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Doss, W.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Earle, E. D.

Everett, D. H.

D. H. Everett, “How much do we really know about water?” in Water and Aqueous Solutions, Vol. 37, G. W. Neilson, J. E. Enderby, eds. (Hilger, London, 1985), pp. 331–342.

Green, S. A.

S. A. Green, N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903–1916 (1994).
[CrossRef]

Hakvoort, J. M. H.

H. Buiteveldm, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Hale, G. M.

Halikas, G.

R. W. Austin, G. Halikas, “The index of refraction of seawater,” (Scripps Institution of Oceanography, San Diego, Calif., 1976).

Halmann, M.

M. Halmann, I. Platzner, “Temperature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem. 70, 580–581 (1966).
[CrossRef]

Højerslev, N. K.

I. Trabjerg, N. K. Højerslev, “Temperature influence on light absorption by fresh water and seawater in the visible and near-infrared spectrum,” Appl. Opt. 35, 2653–2658 (1996).
[CrossRef] [PubMed]

N. K. Højerslev, I. Trabjerg, “A new perspective for remote sensing measurements of plankton pigments and water quality,” (University of Copenhagen,Institute of Physical Oceanography, Copenhagen, 1990).

Irvin, J. A.

T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980).
[CrossRef]

Irvine, W. M.

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

Kartha, V. B.

J. B. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–222 (1963).
[CrossRef]

Kennedy, C. D.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Kitchen, J. C.

J. R. V. Zaneveld, J. C. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

Lin, J.

J. Lin, C. W. Brown, “Near-IR spectroscopic measurement of seawater salinity,” Environ. Sci. Technol. 27, 1611–1615 (1993).
[CrossRef]

Luck, W.

W. Luck, “Beitrag zur Assoziation des flussigen Wassers. I. Die Temperaturabhangigkeit der Ultrarotbanden des Wassers,” Ber. Bunsenges. Physik. Chem. 67, 186–189 (1963).

Maffione, R. A.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Moore, C.

C. Moore, “In situ, biochemical, oceanic, optical meters,” Sea Technol. 35, 10–16 (1994).

J. R. V. Zaneveld, J. C. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

Morel, A.

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, London, 1974), pp. 1–24.

Mueller, J. L.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Nampoori, V. P. N.

Patel, C. K. N.

Pegau, W. S.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 597–604 (1994).
[CrossRef]

Perry, M. J.

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Platzner, I.

M. Halmann, I. Platzner, “Temperature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem. 70, 580–581 (1966).
[CrossRef]

Pollack, J. B.

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

Pope, R. M.

R. M. Pope, “Optical absorption of pure water and seawater using the integrating cavity absorption meter,” Ph.D. dissertation (Texas A&M College, College Station, Tex., 1993).

Querry, M. R.

Quickenden, T. I.

T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980).
[CrossRef]

Ravisankar, M.

Reghunath, A. T.

Roesler, C. S.

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Sathianandan, K.

Segelstein, D. J.

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 1059–1077.

Shifrin, K. S.

K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).

Sinclair, D.

Smith, R. C.

Stevens, W. H.

J. B. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–222 (1963).
[CrossRef]

Stone, R.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Storey, R. S.

Stoughton, R. W.

W. C. Waggener, A. J. Weinberger, R. W. Stoughton, “The absorption spectrum of H2O and D2O in the near infrared region as a function of temperature from -20° to 250 °C,” (Atomic Energy Commission, Washington, D.C., 1964).

Sullivan, S. A.

Tam, A. C.

Trabjerg, I.

I. Trabjerg, N. K. Højerslev, “Temperature influence on light absorption by fresh water and seawater in the visible and near-infrared spectrum,” Appl. Opt. 35, 2653–2658 (1996).
[CrossRef] [PubMed]

N. K. Højerslev, I. Trabjerg, “A new perspective for remote sensing measurements of plankton pigments and water quality,” (University of Copenhagen,Institute of Physical Oceanography, Copenhagen, 1990).

Trees, C. C.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Waggener, W. C.

W. C. Waggener, A. J. Weinberger, R. W. Stoughton, “The absorption spectrum of H2O and D2O in the near infrared region as a function of temperature from -20° to 250 °C,” (Atomic Energy Commission, Washington, D.C., 1964).

Waring, R. C.

Weidemann, A. D.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Weinberger, A. J.

W. C. Waggener, A. J. Weinberger, R. W. Stoughton, “The absorption spectrum of H2O and D2O in the near infrared region as a function of temperature from -20° to 250 °C,” (Atomic Energy Commission, Washington, D.C., 1964).

Wells, W. H.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Wieliczka, D. M.

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 1059–1077.

Zaneveld, J. R. V.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

J. R. V. Zaneveld, J. C. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 597–604 (1994).
[CrossRef]

Appl. Opt. (7)

Ber. Bunsenges. Physik. Chem. (1)

W. Luck, “Beitrag zur Assoziation des flussigen Wassers. I. Die Temperaturabhangigkeit der Ultrarotbanden des Wassers,” Ber. Bunsenges. Physik. Chem. 67, 186–189 (1963).

Environ. Sci. Technol. (1)

J. Lin, C. W. Brown, “Near-IR spectroscopic measurement of seawater salinity,” Environ. Sci. Technol. 27, 1611–1615 (1993).
[CrossRef]

Icarus (1)

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

Infrared Phys. (1)

J. B. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 µm to 10 µm,” Infrared Phys. 3, 211–222 (1963).
[CrossRef]

J. Chem. Phys. (1)

T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980).
[CrossRef]

J. Geophys. Res. (1)

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

M. Halmann, I. Platzner, “Temperature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem. 70, 580–581 (1966).
[CrossRef]

Limnol. Oceanogr. (3)

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

S. A. Green, N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnol. Oceanogr. 39, 1903–1916 (1994).
[CrossRef]

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Phys. Rev. (1)

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 25, 771–779 (1925).
[CrossRef]

Sea Technol. (1)

C. Moore, “In situ, biochemical, oceanic, optical meters,” Sea Technol. 35, 10–16 (1994).

Other (13)

R. W. Austin, G. Halikas, “The index of refraction of seawater,” (Scripps Institution of Oceanography, San Diego, Calif., 1976).

A. D. Buckingham, “The structure and properties of a water molecule,” in Water and Aqueous Solutions, Vol. ●, G. W. Neilson, J. E. Enderby, eds. (Hilger, Bristol, 1986), pp. 1–10.

J. Dera, Marine Physics (Elsevier, Amsterdam, 1992).

R. M. Pope, “Optical absorption of pure water and seawater using the integrating cavity absorption meter,” Ph.D. dissertation (Texas A&M College, College Station, Tex., 1993).

W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 597–604 (1994).
[CrossRef]

H. Buiteveldm, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
[CrossRef]

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, London, 1974), pp. 1–24.

D. H. Everett, “How much do we really know about water?” in Water and Aqueous Solutions, Vol. 37, G. W. Neilson, J. E. Enderby, eds. (Hilger, London, 1985), pp. 331–342.

N. K. Højerslev, I. Trabjerg, “A new perspective for remote sensing measurements of plankton pigments and water quality,” (University of Copenhagen,Institute of Physical Oceanography, Copenhagen, 1990).

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 1059–1077.

J. R. V. Zaneveld, J. C. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).

W. C. Waggener, A. J. Weinberger, R. W. Stoughton, “The absorption spectrum of H2O and D2O in the near infrared region as a function of temperature from -20° to 250 °C,” (Atomic Energy Commission, Washington, D.C., 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorption coefficient of pure water as measured or compiled by several investigators.1,2,11,18,19,21,2633 The discrepancy in the estimated absorption coefficients is largest at short wavelengths where absorption by organic contaminants is significant. At wavelengths longer than 550 nm the standard deviation of the estimates is between 5 and 10% of the mean value.

Fig. 2
Fig. 2

Absorption coefficient of pure water as measured by Pope.18 The arrows point to the major absorption shoulders in the visible and the first absorption peak in the near infrared. Lesser absorption shoulders also exist at 555 and 665 nm.

Fig. 3
Fig. 3

Schematic diagram of the plumbing used for this experiment.

Fig. 4
Fig. 4

Measured temperature slopes (Ψ T ) in the visible. The error bars represent ±2 standard deviations of the measurements. There is no significant difference between the Ψ T values for pure and saline water.

Fig. 5
Fig. 5

Compilation of estimates of Ψ T . In the visible there is a bias of 0.0011 between our measurements and those of Buiteveld et al. In regions of the peaks, some of the difference between the measurements can be due to errors in wavelength. When the peaks of Ψ T are aligned the estimates are more consistent. Included with the measured values is a curve representing an estimate of Ψ T based on the Gaussians fit to the absorption spectrum. The constant values of Ψ T (0.003,4 -0.0015) reported in the blue and green portions of the spectrum are not provided in this plot.

Fig. 6
Fig. 6

Attenuation coefficient at 715 nm as a function of salinity. This figure illustrates the linear dependence of the attenuation coefficient on salinity.

Fig. 7
Fig. 7

Our salinity results combined with the results of previous investigations.

Fig. 8
Fig. 8

Profile of absorption of water passed through a 0.2-µm filter and the physical parameters of temperature and salinity. Wavelength decreases from 715 nm at the left to 412 nm at the right. At 412 and 440 nm there is evidence of variability in the concentration of dissolved organics. Only at 715 nm is there evidence of changes in the measured absorption related to the physical parameters.

Fig. 9
Fig. 9

Laboratory values of Ψ T and Ψ S applied to field measurements of a md (715) for water that has been passed through a 0.2-µm filter. Curve D is a md (650) and is expected to be similar in shape as well as slightly greater in magnitude than a md (715). Curve A is the measured value of a md (715). Curve B is a md (715) with the temperature correction applied. Note that curve B is similar to curve D but the magnitude is less than zero. Applying the salinity correction to the temperature corrected a md (715) gives curve C. Curve C is of the same shape and magnitude for the dissolved component, given curve D as a reference.

Fig. 10
Fig. 10

From left to right are the measured values of absorption by the dissolved component at 488, 440, and 412 nm. The water temperature changed by 5° over the depth of the profile. If the proposed constant temperature dependence of the order of 0.001 m-1/ °C existed, a change in the concentration of dissolved matter can compensate for the expected change in water absorption. However, a change in absorption by dissolved materials cannot match the expected change in water absorption at all three wavelengths. A corresponding change in the spectral slope of the yellow matter would also need to occur to provide these results. Since all three wavelengths exhibit the same vertical profile it is unlikely that a constant value of Ψ T exists in the visible.

Tables (5)

Tables Icon

Table 1 Wavelengths at which the Absorption Coefficient was Measureda

Tables Icon

Table 2 Linear Slopes of the Temperature Dependence of the Absorption Coefficient Measured in the Laboratorya

Tables Icon

Table 3 Estimates of Ψ T Calculated Based on Ψ T as a Percentage of the Magnitude of the Gaussian Fit to the Absorption Spectrum of Pure Watera

Tables Icon

Table 4 Slopes of the Absorption Coefficient versus Salinity Based on Linear Regression Analysis

Tables Icon

Table 5 Slopes of Linear Regression of Dissolved Absorption Coefficients Measured in the Ocean versus Temperaturea

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

awλ, T, S=awλ, Tr, 0+ΨTT-Tr+ΨSS,
am=at-awr+εb,
at=ap+ad+aw,
am=ap+ad+aw-awr+εb.
amd=ad+aw-awr.
adλ=ad488* exp-0.015*λ-488,

Metrics