Abstract

A lidar system was used in a seawater tank to measure the average diffuse reflectivity of live sardines. Diffuse reflectivity was measured to be 10% for a copolarized laser return and 3% for a cross-polarized return. We used these calibration measurements to infer the density of sardines in areas of the Southern California Bight from vertical profiles obtained with the lidar mounted on a ship. Within schools densities up to ∼0.01 kg m-3 were observed. During hourly survey periods total habitat densities up to ∼2 × 10-3 kg m-2 were observed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Holliday, H. L. Larsen, “Thickness and depth distributions of some epipelagic fish schools off Southern California,” Fish. Bull. 77, 489–494 (1979).
  2. J. L. Squire, H. Krumboltz, “Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques,” Mar. Technol. Soc. J. 15, 27–31 (1981).
  3. M. K. Krekova, G. M. Krekov, I. V. Samokhvalov, V. S. Shamanaev, “Numerical evaluation of the possibilities of remote sensing of fish schools,” Appl. Opt. 33, 5715–5720 (1994).
    [CrossRef] [PubMed]
  4. D. L. Murphree, C. D. Taylor, R. W. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAA J. 12, 1686–1692 (1974).
    [CrossRef]
  5. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater laser-radar experiments for bathymetry and fish-school detection,” (Göteborg Institute of Physics, Göteborg, Sweden, 1978).
  6. J. H. Churnside, P. A. McGillivary, “Optical properties of several Pacific fishes,” Appl. Opt. 30, 2925–2927 (1991).
    [CrossRef] [PubMed]
  7. J. A. Benigno, D. J. Kemmerer, “Aerial photographic sensing of pelagic fish schools: a comparison of two films,” presented at the American Society of Photogrammetry Symposium on Remote Sensing in the Ocean, Lake Buena Vista, Fla., October 1973.
  8. J. R. Hunter, J. H. Churnside, eds., “Airborne fishery assessment technology - a National Oceanic and Atmospheric Administration workshop report,” , 1995 (Southwest Fisheries Science Center, La Jolla, Calif.), pp. 71.

1994 (1)

1991 (1)

1981 (1)

J. L. Squire, H. Krumboltz, “Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques,” Mar. Technol. Soc. J. 15, 27–31 (1981).

1979 (1)

D. V. Holliday, H. L. Larsen, “Thickness and depth distributions of some epipelagic fish schools off Southern California,” Fish. Bull. 77, 489–494 (1979).

1974 (1)

D. L. Murphree, C. D. Taylor, R. W. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAA J. 12, 1686–1692 (1974).
[CrossRef]

Benigno, J. A.

J. A. Benigno, D. J. Kemmerer, “Aerial photographic sensing of pelagic fish schools: a comparison of two films,” presented at the American Society of Photogrammetry Symposium on Remote Sensing in the Ocean, Lake Buena Vista, Fla., October 1973.

Churnside, J. H.

Fredriksson, K.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater laser-radar experiments for bathymetry and fish-school detection,” (Göteborg Institute of Physics, Göteborg, Sweden, 1978).

Galle, B.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater laser-radar experiments for bathymetry and fish-school detection,” (Göteborg Institute of Physics, Göteborg, Sweden, 1978).

Holliday, D. V.

D. V. Holliday, H. L. Larsen, “Thickness and depth distributions of some epipelagic fish schools off Southern California,” Fish. Bull. 77, 489–494 (1979).

Kemmerer, D. J.

J. A. Benigno, D. J. Kemmerer, “Aerial photographic sensing of pelagic fish schools: a comparison of two films,” presented at the American Society of Photogrammetry Symposium on Remote Sensing in the Ocean, Lake Buena Vista, Fla., October 1973.

Krekov, G. M.

Krekova, M. K.

Krumboltz, H.

J. L. Squire, H. Krumboltz, “Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques,” Mar. Technol. Soc. J. 15, 27–31 (1981).

Larsen, H. L.

D. V. Holliday, H. L. Larsen, “Thickness and depth distributions of some epipelagic fish schools off Southern California,” Fish. Bull. 77, 489–494 (1979).

McClendon, R. W.

D. L. Murphree, C. D. Taylor, R. W. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAA J. 12, 1686–1692 (1974).
[CrossRef]

McGillivary, P. A.

Murphree, D. L.

D. L. Murphree, C. D. Taylor, R. W. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAA J. 12, 1686–1692 (1974).
[CrossRef]

Nyström, K.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater laser-radar experiments for bathymetry and fish-school detection,” (Göteborg Institute of Physics, Göteborg, Sweden, 1978).

Öström, B.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater laser-radar experiments for bathymetry and fish-school detection,” (Göteborg Institute of Physics, Göteborg, Sweden, 1978).

Samokhvalov, I. V.

Shamanaev, V. S.

Squire, J. L.

J. L. Squire, H. Krumboltz, “Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques,” Mar. Technol. Soc. J. 15, 27–31 (1981).

Svanberg, S.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater laser-radar experiments for bathymetry and fish-school detection,” (Göteborg Institute of Physics, Göteborg, Sweden, 1978).

Taylor, C. D.

D. L. Murphree, C. D. Taylor, R. W. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAA J. 12, 1686–1692 (1974).
[CrossRef]

AIAA J. (1)

D. L. Murphree, C. D. Taylor, R. W. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAA J. 12, 1686–1692 (1974).
[CrossRef]

Appl. Opt. (2)

Fish. Bull. (1)

D. V. Holliday, H. L. Larsen, “Thickness and depth distributions of some epipelagic fish schools off Southern California,” Fish. Bull. 77, 489–494 (1979).

Mar. Technol. Soc. J. (1)

J. L. Squire, H. Krumboltz, “Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques,” Mar. Technol. Soc. J. 15, 27–31 (1981).

Other (3)

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater laser-radar experiments for bathymetry and fish-school detection,” (Göteborg Institute of Physics, Göteborg, Sweden, 1978).

J. A. Benigno, D. J. Kemmerer, “Aerial photographic sensing of pelagic fish schools: a comparison of two films,” presented at the American Society of Photogrammetry Symposium on Remote Sensing in the Ocean, Lake Buena Vista, Fla., October 1973.

J. R. Hunter, J. H. Churnside, eds., “Airborne fishery assessment technology - a National Oceanic and Atmospheric Administration workshop report,” , 1995 (Southwest Fisheries Science Center, La Jolla, Calif.), pp. 71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Video of fish shadows on the bottom of the tank. (The year was set incorrectly; it should be 1995.)

Fig. 2
Fig. 2

Magnitude of the bottom signal as a function of (1 - F)2 for the cross-polarized data set, where F is the fraction of the beam blocked by fish.

Fig. 3
Fig. 3

Magnitude of the depth-corrected fish signal as a function of the fraction of the beam blocked by fish, F.

Fig. 4
Fig. 4

Typical lidar return with no fish present. The dashed curve is a fit of the clear-water return.

Fig. 5
Fig. 5

Typical return from a lidar pulse that intercepts a school of fish at a depth of 15 m. The dashed curve is a fit of the clear-water return.

Fig. 6
Fig. 6

Time–depth plot of lidar return from a school of fish, showing images of (top) raw data and (bottom) after both subtraction of the water return and contrast enhancement.

Fig. 7
Fig. 7

Time–depth plot of the echo sounder record of the same school of fish as in Fig. 6.

Fig. 8
Fig. 8

Fish density for the habitat surveyed from 0600 to 0700 PDT, 24 September 1995.

Fig. 9
Fig. 9

Fish density for the habitat surveyed from 0700 to 0800 PDT, 24 September 1995.

Fig. 10
Fig. 10

Fish density for the habitat surveyed from 0800 to 0900 PDT, 24 September 1995.

Fig. 11
Fig. 11

Fish density for the habitat surveyed from 1000 to 1100 PDT, 24 September 1995.

Tables (2)

Tables Icon

Table 1 Lidar Transmitter and Receiver Parameters

Tables Icon

Table 2 Parameters of Fish in the Tank

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Sd=C1-F2,
Sf=CRfRdzd2zf2exp-2αzf-zdF,
S=zf2zd2exp2αzf-zdSf.
Rf=3.24×10-4±1.75×10-51.20×10-2±2.71×10-4Rd.
Swz=a exp-αznhcosθwcosθa+z2+b,
Sz=a1+βFzβwexp-αznhcosθwcosθa+z2+b,
lnSz-b-lnSwz-b=ln1+βfzβw.
βfzβw=explnSfz-b-lnSwz-b-1.
D=2πβwdRf=0.21,

Metrics