Abstract

We have developed a Doppler lidar system using the edge technique and have made atmospheric lidar wind measurements. Line-of-sight wind profiles with a vertical resolution of 22 m have a standard deviation of 0.40 m/s for a ten-shot average. Day and night lidar measurements of the vector wind have been made for altitudes from 200 to 2000 m. We validated the lidar measurements by comparing them with independent rawinsonde and pilot balloon measurements of wind speed and direction. Good agreement was obtained. The instrumental noise for these data is 0.11 m/s for a 500-shot average, which is in good agreement with the observed minimum value of the standard deviation for the atmospheric measurements. The average standard deviation over 30 mins varied from 1.16 to 0.25 m/s for day and night, respectively. High spatial and temporal resolution lidar profiles of line-of-sight winds clearly show wind shear and turbulent features at the 1–2-m/s level with a high signal-to-noise ratio and demonstrate the potential of the edge-technique lidar for studying turbulent processes and atmospheric dynamics.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Korb, B. Gentry, C. Weng, “The edge technique—theory and application to the lidar measurement of atmospheric winds,” Appl. Opt. 31, 4202–4213 (1992).
    [CrossRef] [PubMed]
  2. C. L. Korb, B. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Diges Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324.
  3. J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field experiments,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
    [CrossRef]
  4. F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1984).
    [CrossRef] [PubMed]
  5. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
    [CrossRef] [PubMed]
  6. J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
    [CrossRef]
  7. M. J. Kavaya, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
    [CrossRef] [PubMed]
  8. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, D. Moerder, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
    [CrossRef]
  9. G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
    [CrossRef]
  10. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  11. V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
    [CrossRef] [PubMed]
  12. K. W. Fischer, V. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
    [CrossRef]
  13. B. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
    [CrossRef] [PubMed]
  14. P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry–Perot etalons,” J. Opt. Soc. Am. 44, 761–765 (1954).
    [CrossRef]
  15. C. J. Grund, E. Eloranta, “Fiber-optic scrambler reduces the bandpass range dependence of Fabry–Perot etalons used for spectral analysis of lidar backscatter,” Appl. Opt. 30, 2668–2670 (1991).
    [CrossRef] [PubMed]
  16. G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, Mass., 1986).
  17. J. M. Vaughan, The Fabry-Perot Interferometer—History, Theory, Practice and Applications (Hilger, Philadelphia, Pa., 1990).
  18. H. Mark, J. Workman, Statistics in Spectroscopy (Academic, San Diego, Calif., 1991).

1995

K. W. Fischer, V. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

1994

1993

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, D. Moerder, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

1992

1991

1990

1989

M. J. Kavaya, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

1986

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

1984

1972

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

1954

Abreu, V.

K. W. Fischer, V. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Abreu, V. J.

Barnes, J. E.

K. W. Fischer, V. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
[CrossRef] [PubMed]

Benedetti-Michelangeli, G.

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

Bilbro, J.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field experiments,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

Bilbro, J. W.

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

Chanin, M. L.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Congeduti, F.

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

Cupp, R. E.

DiMarzio, C.

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

Eloranta, E.

Fichtl, G.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field experiments,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

Fiocco, G.

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

Fischer, K. W.

K. W. Fischer, V. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Fitzjarrald, D.

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field experiments,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

Garnier, A.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Gentry, B.

B. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
[CrossRef] [PubMed]

C. L. Korb, B. Gentry, C. Weng, “The edge technique—theory and application to the lidar measurement of atmospheric winds,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

C. L. Korb, B. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Diges Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324.

Grund, C. J.

Hale, C. P.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, D. Moerder, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

M. J. Kavaya, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

Hall, F. F.

Hardesty, R. M.

Hauchecorne, A.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Hays, P. B.

Henderson, S. W.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, D. Moerder, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Hernandez, G.

G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, Mass., 1986).

Huffaker, R. M.

Irgang, T. D.

K. W. Fischer, V. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Jackson, M. E.

Jacquinot, P.

Johnson, S.

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

Jones, W.

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

Kavaya, M. J.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, D. Moerder, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

M. J. Kavaya, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

Korb, C. L.

B. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
[CrossRef] [PubMed]

C. L. Korb, B. Gentry, C. Weng, “The edge technique—theory and application to the lidar measurement of atmospheric winds,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

C. L. Korb, B. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Diges Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324.

Krause, M.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field experiments,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

Lawrence, T. R.

Lee, R.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field experiments,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

Magee, J. R.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, D. Moerder, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

M. J. Kavaya, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

Mark, H.

H. Mark, J. Workman, Statistics in Spectroscopy (Academic, San Diego, Calif., 1991).

McGill, M. J.

K. W. Fischer, V. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Moerder, D.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, D. Moerder, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Porteneuve, J.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Post, M. J.

Richter, R. A.

Skinner, W. R.

K. W. Fischer, V. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Vaughan, J. M.

J. M. Vaughan, The Fabry-Perot Interferometer—History, Theory, Practice and Applications (Hilger, Philadelphia, Pa., 1990).

Weber, B. F.

Weng, C.

Workman, J.

H. Mark, J. Workman, Statistics in Spectroscopy (Academic, San Diego, Calif., 1991).

Appl. Opt.

Bull. Am. Meteorol. Soc.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field experiments,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984).
[CrossRef]

Geophys. Res. Lett.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, D. Moerder, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

J. Atmos. Sci.

G. Benedetti-Michelangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

J. Opt. Soc. Am.

Opt. Eng.

K. W. Fischer, V. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Opt. Lett.

Other

C. L. Korb, B. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Diges Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324.

G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, Mass., 1986).

J. M. Vaughan, The Fabry-Perot Interferometer—History, Theory, Practice and Applications (Hilger, Philadelphia, Pa., 1990).

H. Mark, J. Workman, Statistics in Spectroscopy (Academic, San Diego, Calif., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of optics used in the edge technique lidar experiment: BS’s, beam splitters; M’s, mirrors; NDF, neutral density filter; IF, bandpass interference filter; EM, energy monitor detector.

Fig. 2
Fig. 2

Normalized signals, in arbitrary units, obtained for hard-target and reference measurements.

Fig. 3
Fig. 3

Velocity measurements made for a stationary hard target.

Fig. 4
Fig. 4

(a)–(c) Three consecutive line-of-sight lidar wind profiles measured at 10-s intervals as functions of range in each figure. The measurements were made on 7 October 1994 at the Goddard Space Flight Center, with the lidar pointing in the northeast direction with a 45° elevation angle. The measurements shown in (a) began at 16:49:30 EDT, those in (b) at 16:50:30 EDT, and those in (c) at 16:51:30 EDT.

Fig. 5
Fig. 5

Three-dimensional view of the line-of-sight wind is shown as a function of range at 10-s intervals. The measurements were made at the Goddard Space Flight Center in the northeast direction with a 45° elevation angle.

Fig. 6
Fig. 6

Mean wind speed and direction measured with the edge technique lidar at GSFC on 27 September 1995 from 17:01 EDT to 17:18 EDT with the standard deviation calculated for four profiles. The lidar measurements are shown as filled circles and collocated pilot balloon data are shown as filled squares.

Fig. 7
Fig. 7

Mean wind speed and direction measured with the edge technique lidar at GSFC on 11 October 1995 from 19:00 EDT to 19:30 EDT with the standard deviation calculated for seven profiles: filled circles, lidar measurements; filled triangles, collocated rawinsonde data; and filled squares, optical theodolite data. The dashed curve shows the lidar wind profile taken closest in time to the rawinsonde launch.

Fig. 8
Fig. 8

Mean wind speed and direction measured with the edge technique lidar at GSFC on 12 October 1995 from 00:01 EDT to 00:34 EDT with the standard deviation calculated for eight profiles: filled circles, lidar measurements; filled triangles, collocated rawinsonde data.

Fig. 9
Fig. 9

Standard deviation of the line-of-sight wind as a function of altitude for ten-shot averages for the data of Fig. 8.

Tables (1)

Tables Icon

Table 1 Lidar Instrument Parameters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

INν=IedgeIEM=CFν,
v=c2νINν+Δν-INνCβν, ν+Δν,
Θ=1v0ΔININ,
=1S/NΘ,
H=sin γz.
1S/N=1S/N12+1S/N221/2,
INν+Δν, R¯=i=1MIEDGiRi=1MIEMiR,

Metrics