Abstract

We describe the theory of imaging by degenerate four-wave mixing (DFWM) using a standard diffraction theory of imaging by coherent light. We demonstrate that, even with the phase-conjugating geometry, no aberration correction can be achieved by DFWM imaging. We demonstrate the coherent nature of DFWM image formation using spatially modulated signals generated in flame OH in the phase-conjugating geometry. The intensity distribution in the Fourier plane of a telecentric lens system is shown to be the spatial Fourier transform of the object distribution characteristic of coherent imaging. The brightness of the DFWM signals exceeds that of similar laser-induced fluorescence signals that can be discriminated by restricting the aperture of the imaging system while still allowing a spatial resolution of approximately 70 µm. DFWM imaging with the forward-folded boxcars geometry is demonstrated and used in a simple referencing scheme to compensate for structure on the images imposed by nonuniformity of the laser beams employed. Images formed in NO are used to illustrate that structure on a scale of less than 100 µm arising from beam inhomogeneity can be removed by this referencing technique.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription