Abstract

Single-crystal sapphire fibers have been grown with the laser-heated pedestal-growth method with losses as low as 0.3 dB/m at 2.94 µm. With the incorporation of a computer-controlled feedback system, fibers have been grown with less than ±0.5% diameter variation, or ±1.5 µm for a 300-µm fiber. The losses in these fibers have been reduced further through a postgrowth anneal at 1000 °C in air, from 5.4 to 1.5 dB/m at 543 nm and from 0.4–0.3 dB/m at 2.94 µm. These fibers delivered 4.7 W at 10 Hz of Er:YAG laser power.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. LaBelle, “EFG the invention and application to sapphire growth,” J. Cryst. Growth 50, 8–17 (1980).
    [CrossRef]
  2. D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).
    [CrossRef]
  3. R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669–680 (1986).
    [CrossRef]
  4. R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, T. J. Lin, ed., SPIE1104, 244–250 (1989).
  5. R. S. F. Chang, V. Phomsakha, N. Djeu, “Recent advances in sapphire fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 48–53 (1995).
  6. G. N. Merberg, J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
    [CrossRef] [PubMed]
  7. R. K. Nubling, R. L. Kozodoy, J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., SPIE2131, 56–61 (1994).
  8. V. Phomsakha, R. S. F. Chang, N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65, 3860–3861 (1994).
    [CrossRef]
  9. G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 54–59 (1995)
  10. J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of Erbium: YAG laser energy,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 60–70 (1995)
  11. A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of Er:YAG laser energy and IR sensor applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., SPIE2677, 35–42 (1996).
  12. D. B. Gasson, B. Cockayne, “Oxide crystal growth using gas lasers,” J. Mater. Sci. 5, 100–104 (1970).
    [CrossRef]
  13. J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” . (NASA, Greenbelt, Md., 1972).
  14. J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Method for forming refractory fibers by laser energy,” U.S. patent3,944,640 (16March1976).
  15. J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Apparatus for forming refractory fibers,” U.S. patent4,012,213 (15March1977).
  16. J. A. Harrington, Selected Papers on Infrared Fiber Optics, Milestone Series, Vol. MS-9 (SPIE Press, Bellingham, Wash., 1990).
  17. R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
    [CrossRef] [PubMed]
  18. M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
    [CrossRef]
  19. R. W. Waynant, S. Oshry, M. Fink, “Infrared measurements of sapphire fibers for medical applications,” Appl. Opt. 32, 390–392 (1993).
    [CrossRef] [PubMed]
  20. T. Surek, “Theory of shape stability in crystal growth from the melt,” J. Appl. Phys. 47, 4384–4393 (1976).
    [CrossRef]
  21. T. Surek, B. Chalmers, “The direction of growth of the surface of a crystal in contact with its melt,” J. Cryst. Growth 29, 1–11 (1975).
    [CrossRef]
  22. S. R. Coriell, M. R. Cordes, “Theory of molten zone shape and stability,” J. Cryst. Growth 42, 466–472 (1977).
    [CrossRef]
  23. T. Surek, S. R. Coriell, B. Chalmers, “The growth of shaped crystals from the melt,” J. Cryst. Growth 50, 21–32 (1980).
    [CrossRef]
  24. A. B. Dreeben, K. M. Kim, A. Schujko, “Measurement of meniscus angle in laser-heated float zone growth of constant diameter sapphire crystals.” J. Cryst. Growth 50, 126–132 (1980).
    [CrossRef]
  25. M. M. Fejer, “Single crystal fibers: growth dynamics and nonlinear optical interactions,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1986).
  26. K. M. Kim, A. B. Dreeben, A. Schujko, “Maximum stable zone length in float-zone growth of small diameter sapphire and silicon crystals,” J. Appl. Phys. 50, 4472–4474 (1979).
    [CrossRef]
  27. M. E. Thomas, W. J. Tropf, “Vacuum-ultraviolet characterization of sapphire, ALON, and spinel near the band gap,” Opt. Eng. 32, 1340–1343 (1993).
    [CrossRef]
  28. M. E. Thomas, “Infrared properties of the extraordinary ray multiphonon processes in sapphire,” Appl. Opt. 28, 3277–3278 (1989).
    [CrossRef] [PubMed]
  29. T. C. Rich, D. A. Pinnow, “Total optical attenuation in bulk fused silica,” Appl. Phys. Lett. 20, 264–266 (1972).
    [CrossRef]
  30. M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, A. B. Vilaverde, M. R. Kokta, “Room-temperature optical absorption in undoped α-Al2O3,” J. Appl. Phys. 67, 7542–7546 (1990).
    [CrossRef]
  31. A. R. Tynes, A. D. Pearson, D. L. Bisbee, “Loss mechanisms and measurements in clad glass fibers and bulk glass,” J. Opt. Soc. Am. 61, 143–153 (1971).
    [CrossRef]
  32. J. A. Harrington, A. G. Standlee, “Attenuation at 10.6 µm in loaded and unloaded polycrystalline KRS-5 fibers,” Appl. Opt. 22, 3073–3078 (1983).
    [CrossRef]
  33. A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 832–833 (1988).
  34. R. S. F. Chang, Z. Ge, N. Djeu, “UV-visible transmission characteristics of sapphire fibers grown by laser-heated pedestal growth technique,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 145–150 (1995).
  35. R. S. F. Chang, “Development of high optical quality high temperature sapphire fibers,” (NASA, Langley Research Center, Hampton, Va., 1994).
  36. T. J. Turner, J. H. Crawford, “V centers in single crystal Al2O3,” Solid State Commun. 17, 167–169 (1975).
    [CrossRef]
  37. K. H. Lee, G. E. Holmberg, J. H. Crawford, “Hole centers in gamma-irradiated, oxidized Al2O3,” Solid State Commun. 20, 183–185 (1976).
    [CrossRef]
  38. K. Eigenmann, K. Kurtz, H. H. Gunthard, “Solid state reactions and defects in doped verneuil sapphire,” Helv. Phys. Acta 45, 452–480 (1972).
  39. K. Eigenmann, H. H. Gunthard, “Valence state, redox reactions and biparticle formation of Fe and Ti doped sapphire,” Chem. Phys. Lett. 13, 58–61 (1972).
    [CrossRef]

1996 (1)

1994 (1)

V. Phomsakha, R. S. F. Chang, N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65, 3860–3861 (1994).
[CrossRef]

1993 (3)

1990 (1)

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, A. B. Vilaverde, M. R. Kokta, “Room-temperature optical absorption in undoped α-Al2O3,” J. Appl. Phys. 67, 7542–7546 (1990).
[CrossRef]

1989 (2)

M. E. Thomas, “Infrared properties of the extraordinary ray multiphonon processes in sapphire,” Appl. Opt. 28, 3277–3278 (1989).
[CrossRef] [PubMed]

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).
[CrossRef]

1988 (1)

A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 832–833 (1988).

1986 (1)

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669–680 (1986).
[CrossRef]

1984 (1)

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

1983 (1)

1980 (3)

H. E. LaBelle, “EFG the invention and application to sapphire growth,” J. Cryst. Growth 50, 8–17 (1980).
[CrossRef]

T. Surek, S. R. Coriell, B. Chalmers, “The growth of shaped crystals from the melt,” J. Cryst. Growth 50, 21–32 (1980).
[CrossRef]

A. B. Dreeben, K. M. Kim, A. Schujko, “Measurement of meniscus angle in laser-heated float zone growth of constant diameter sapphire crystals.” J. Cryst. Growth 50, 126–132 (1980).
[CrossRef]

1979 (1)

K. M. Kim, A. B. Dreeben, A. Schujko, “Maximum stable zone length in float-zone growth of small diameter sapphire and silicon crystals,” J. Appl. Phys. 50, 4472–4474 (1979).
[CrossRef]

1977 (1)

S. R. Coriell, M. R. Cordes, “Theory of molten zone shape and stability,” J. Cryst. Growth 42, 466–472 (1977).
[CrossRef]

1976 (2)

K. H. Lee, G. E. Holmberg, J. H. Crawford, “Hole centers in gamma-irradiated, oxidized Al2O3,” Solid State Commun. 20, 183–185 (1976).
[CrossRef]

T. Surek, “Theory of shape stability in crystal growth from the melt,” J. Appl. Phys. 47, 4384–4393 (1976).
[CrossRef]

1975 (2)

T. Surek, B. Chalmers, “The direction of growth of the surface of a crystal in contact with its melt,” J. Cryst. Growth 29, 1–11 (1975).
[CrossRef]

T. J. Turner, J. H. Crawford, “V centers in single crystal Al2O3,” Solid State Commun. 17, 167–169 (1975).
[CrossRef]

1972 (3)

K. Eigenmann, K. Kurtz, H. H. Gunthard, “Solid state reactions and defects in doped verneuil sapphire,” Helv. Phys. Acta 45, 452–480 (1972).

K. Eigenmann, H. H. Gunthard, “Valence state, redox reactions and biparticle formation of Fe and Ti doped sapphire,” Chem. Phys. Lett. 13, 58–61 (1972).
[CrossRef]

T. C. Rich, D. A. Pinnow, “Total optical attenuation in bulk fused silica,” Appl. Phys. Lett. 20, 264–266 (1972).
[CrossRef]

1971 (1)

1970 (1)

D. B. Gasson, B. Cockayne, “Oxide crystal growth using gas lasers,” J. Mater. Sci. 5, 100–104 (1970).
[CrossRef]

Bass, M.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, A. B. Vilaverde, M. R. Kokta, “Room-temperature optical absorption in undoped α-Al2O3,” J. Appl. Phys. 67, 7542–7546 (1990).
[CrossRef]

Bates, H. E.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of Erbium: YAG laser energy,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 60–70 (1995)

Bisbee, D. L.

Byer, R. L.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).
[CrossRef]

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Chadwick, D.

G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 54–59 (1995)

Chalmers, B.

T. Surek, S. R. Coriell, B. Chalmers, “The growth of shaped crystals from the melt,” J. Cryst. Growth 50, 21–32 (1980).
[CrossRef]

T. Surek, B. Chalmers, “The direction of growth of the surface of a crystal in contact with its melt,” J. Cryst. Growth 29, 1–11 (1975).
[CrossRef]

Chang, R. S. F.

V. Phomsakha, R. S. F. Chang, N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65, 3860–3861 (1994).
[CrossRef]

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, T. J. Lin, ed., SPIE1104, 244–250 (1989).

R. S. F. Chang, Z. Ge, N. Djeu, “UV-visible transmission characteristics of sapphire fibers grown by laser-heated pedestal growth technique,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 145–150 (1995).

R. S. F. Chang, V. Phomsakha, N. Djeu, “Recent advances in sapphire fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 48–53 (1995).

R. S. F. Chang, “Development of high optical quality high temperature sapphire fibers,” (NASA, Langley Research Center, Hampton, Va., 1994).

Clarke, G. M.

G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 54–59 (1995)

Cockayne, B.

D. B. Gasson, B. Cockayne, “Oxide crystal growth using gas lasers,” J. Mater. Sci. 5, 100–104 (1970).
[CrossRef]

Cordes, M. R.

S. R. Coriell, M. R. Cordes, “Theory of molten zone shape and stability,” J. Cryst. Growth 42, 466–472 (1977).
[CrossRef]

Coriell, S. R.

T. Surek, S. R. Coriell, B. Chalmers, “The growth of shaped crystals from the melt,” J. Cryst. Growth 50, 21–32 (1980).
[CrossRef]

S. R. Coriell, M. R. Cordes, “Theory of molten zone shape and stability,” J. Cryst. Growth 42, 466–472 (1977).
[CrossRef]

Crawford, J. H.

K. H. Lee, G. E. Holmberg, J. H. Crawford, “Hole centers in gamma-irradiated, oxidized Al2O3,” Solid State Commun. 20, 183–185 (1976).
[CrossRef]

T. J. Turner, J. H. Crawford, “V centers in single crystal Al2O3,” Solid State Commun. 17, 167–169 (1975).
[CrossRef]

Dixon, G. J.

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, T. J. Lin, ed., SPIE1104, 244–250 (1989).

Djeu, N.

V. Phomsakha, R. S. F. Chang, N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65, 3860–3861 (1994).
[CrossRef]

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, T. J. Lin, ed., SPIE1104, 244–250 (1989).

R. S. F. Chang, V. Phomsakha, N. Djeu, “Recent advances in sapphire fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 48–53 (1995).

R. S. F. Chang, Z. Ge, N. Djeu, “UV-visible transmission characteristics of sapphire fibers grown by laser-heated pedestal growth technique,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 145–150 (1995).

Dreeben, A. B.

A. B. Dreeben, K. M. Kim, A. Schujko, “Measurement of meniscus angle in laser-heated float zone growth of constant diameter sapphire crystals.” J. Cryst. Growth 50, 126–132 (1980).
[CrossRef]

K. M. Kim, A. B. Dreeben, A. Schujko, “Maximum stable zone length in float-zone growth of small diameter sapphire and silicon crystals,” J. Appl. Phys. 50, 4472–4474 (1979).
[CrossRef]

Dugan, J. R.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of Erbium: YAG laser energy,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 60–70 (1995)

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of Er:YAG laser energy and IR sensor applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., SPIE2677, 35–42 (1996).

Eigenmann, K.

K. Eigenmann, K. Kurtz, H. H. Gunthard, “Solid state reactions and defects in doped verneuil sapphire,” Helv. Phys. Acta 45, 452–480 (1972).

K. Eigenmann, H. H. Gunthard, “Valence state, redox reactions and biparticle formation of Fe and Ti doped sapphire,” Chem. Phys. Lett. 13, 58–61 (1972).
[CrossRef]

Feigelson, R. S.

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669–680 (1986).
[CrossRef]

Fejer, M. M.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).
[CrossRef]

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

M. M. Fejer, “Single crystal fibers: growth dynamics and nonlinear optical interactions,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1986).

Fink, M.

Fitzgibbon, J. J.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of Erbium: YAG laser energy,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 60–70 (1995)

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of Er:YAG laser energy and IR sensor applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., SPIE2677, 35–42 (1996).

French, R. H.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, A. B. Vilaverde, M. R. Kokta, “Room-temperature optical absorption in undoped α-Al2O3,” J. Appl. Phys. 67, 7542–7546 (1990).
[CrossRef]

Gasson, D. B.

D. B. Gasson, B. Cockayne, “Oxide crystal growth using gas lasers,” J. Mater. Sci. 5, 100–104 (1970).
[CrossRef]

Ge, Z.

R. S. F. Chang, Z. Ge, N. Djeu, “UV-visible transmission characteristics of sapphire fibers grown by laser-heated pedestal growth technique,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 145–150 (1995).

Gunthard, H. H.

K. Eigenmann, H. H. Gunthard, “Valence state, redox reactions and biparticle formation of Fe and Ti doped sapphire,” Chem. Phys. Lett. 13, 58–61 (1972).
[CrossRef]

K. Eigenmann, K. Kurtz, H. H. Gunthard, “Solid state reactions and defects in doped verneuil sapphire,” Helv. Phys. Acta 45, 452–480 (1972).

Haggerty, J. S.

J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” . (NASA, Greenbelt, Md., 1972).

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Method for forming refractory fibers by laser energy,” U.S. patent3,944,640 (16March1976).

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Apparatus for forming refractory fibers,” U.S. patent4,012,213 (15March1977).

Harrington, J. A.

R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
[CrossRef] [PubMed]

G. N. Merberg, J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
[CrossRef] [PubMed]

J. A. Harrington, A. G. Standlee, “Attenuation at 10.6 µm in loaded and unloaded polycrystalline KRS-5 fibers,” Appl. Opt. 22, 3073–3078 (1983).
[CrossRef]

J. A. Harrington, Selected Papers on Infrared Fiber Optics, Milestone Series, Vol. MS-9 (SPIE Press, Bellingham, Wash., 1990).

G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 54–59 (1995)

R. K. Nubling, R. L. Kozodoy, J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., SPIE2131, 56–61 (1994).

Holmberg, G. E.

K. H. Lee, G. E. Holmberg, J. H. Crawford, “Hole centers in gamma-irradiated, oxidized Al2O3,” Solid State Commun. 20, 183–185 (1976).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, A. B. Vilaverde, M. R. Kokta, “Room-temperature optical absorption in undoped α-Al2O3,” J. Appl. Phys. 67, 7542–7546 (1990).
[CrossRef]

Jundt, D. H.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).
[CrossRef]

Katzir, A.

A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 832–833 (1988).

Kim, K. M.

A. B. Dreeben, K. M. Kim, A. Schujko, “Measurement of meniscus angle in laser-heated float zone growth of constant diameter sapphire crystals.” J. Cryst. Growth 50, 126–132 (1980).
[CrossRef]

K. M. Kim, A. B. Dreeben, A. Schujko, “Maximum stable zone length in float-zone growth of small diameter sapphire and silicon crystals,” J. Appl. Phys. 50, 4472–4474 (1979).
[CrossRef]

Kokta, M. R.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, A. B. Vilaverde, M. R. Kokta, “Room-temperature optical absorption in undoped α-Al2O3,” J. Appl. Phys. 67, 7542–7546 (1990).
[CrossRef]

Kozodoy, R. L.

R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
[CrossRef] [PubMed]

R. K. Nubling, R. L. Kozodoy, J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., SPIE2131, 56–61 (1994).

Kurtz, K.

K. Eigenmann, K. Kurtz, H. H. Gunthard, “Solid state reactions and defects in doped verneuil sapphire,” Helv. Phys. Acta 45, 452–480 (1972).

LaBelle, H. E.

H. E. LaBelle, “EFG the invention and application to sapphire growth,” J. Cryst. Growth 50, 8–17 (1980).
[CrossRef]

Lee, K. H.

K. H. Lee, G. E. Holmberg, J. H. Crawford, “Hole centers in gamma-irradiated, oxidized Al2O3,” Solid State Commun. 20, 183–185 (1976).
[CrossRef]

Magel, G. A.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Menashi, W. P.

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Apparatus for forming refractory fibers,” U.S. patent4,012,213 (15March1977).

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Method for forming refractory fibers by laser energy,” U.S. patent3,944,640 (16March1976).

Merberg, G. N.

Nightingale, J. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Nubling, R. K.

R. K. Nubling, R. L. Kozodoy, J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., SPIE2131, 56–61 (1994).

G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 54–59 (1995)

Oshry, S.

Pagkalinawan, A. T.

Pearson, A. D.

Phomsakha, V.

V. Phomsakha, R. S. F. Chang, N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65, 3860–3861 (1994).
[CrossRef]

R. S. F. Chang, V. Phomsakha, N. Djeu, “Recent advances in sapphire fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 48–53 (1995).

Pinnow, D. A.

T. C. Rich, D. A. Pinnow, “Total optical attenuation in bulk fused silica,” Appl. Phys. Lett. 20, 264–266 (1972).
[CrossRef]

Pryshlak, A. P.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of Erbium: YAG laser energy,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 60–70 (1995)

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of Er:YAG laser energy and IR sensor applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., SPIE2677, 35–42 (1996).

Rich, T. C.

T. C. Rich, D. A. Pinnow, “Total optical attenuation in bulk fused silica,” Appl. Phys. Lett. 20, 264–266 (1972).
[CrossRef]

Sa’ar, A.

A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 832–833 (1988).

Schujko, A.

A. B. Dreeben, K. M. Kim, A. Schujko, “Measurement of meniscus angle in laser-heated float zone growth of constant diameter sapphire crystals.” J. Cryst. Growth 50, 126–132 (1980).
[CrossRef]

K. M. Kim, A. B. Dreeben, A. Schujko, “Maximum stable zone length in float-zone growth of small diameter sapphire and silicon crystals,” J. Appl. Phys. 50, 4472–4474 (1979).
[CrossRef]

Sengupta, S.

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, T. J. Lin, ed., SPIE1104, 244–250 (1989).

Shaw, L. B.

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, T. J. Lin, ed., SPIE1104, 244–250 (1989).

Standlee, A. G.

Surek, T.

T. Surek, S. R. Coriell, B. Chalmers, “The growth of shaped crystals from the melt,” J. Cryst. Growth 50, 21–32 (1980).
[CrossRef]

T. Surek, “Theory of shape stability in crystal growth from the melt,” J. Appl. Phys. 47, 4384–4393 (1976).
[CrossRef]

T. Surek, B. Chalmers, “The direction of growth of the surface of a crystal in contact with its melt,” J. Cryst. Growth 29, 1–11 (1975).
[CrossRef]

Swimm, R. T.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, A. B. Vilaverde, M. R. Kokta, “Room-temperature optical absorption in undoped α-Al2O3,” J. Appl. Phys. 67, 7542–7546 (1990).
[CrossRef]

Thomas, M. E.

M. E. Thomas, W. J. Tropf, “Vacuum-ultraviolet characterization of sapphire, ALON, and spinel near the band gap,” Opt. Eng. 32, 1340–1343 (1993).
[CrossRef]

M. E. Thomas, “Infrared properties of the extraordinary ray multiphonon processes in sapphire,” Appl. Opt. 28, 3277–3278 (1989).
[CrossRef] [PubMed]

Tropf, W. J.

M. E. Thomas, W. J. Tropf, “Vacuum-ultraviolet characterization of sapphire, ALON, and spinel near the band gap,” Opt. Eng. 32, 1340–1343 (1993).
[CrossRef]

Turner, T. J.

T. J. Turner, J. H. Crawford, “V centers in single crystal Al2O3,” Solid State Commun. 17, 167–169 (1975).
[CrossRef]

Tynes, A. R.

Vilaverde, A. B.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, A. B. Vilaverde, M. R. Kokta, “Room-temperature optical absorption in undoped α-Al2O3,” J. Appl. Phys. 67, 7542–7546 (1990).
[CrossRef]

Waynant, R. W.

Wenekus, J. F.

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Apparatus for forming refractory fibers,” U.S. patent4,012,213 (15March1977).

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Method for forming refractory fibers by laser energy,” U.S. patent3,944,640 (16March1976).

Appl. Opt. (5)

Appl. Phys. Lett. (2)

T. C. Rich, D. A. Pinnow, “Total optical attenuation in bulk fused silica,” Appl. Phys. Lett. 20, 264–266 (1972).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).
[CrossRef]

Chem. Phys. Lett. (1)

K. Eigenmann, H. H. Gunthard, “Valence state, redox reactions and biparticle formation of Fe and Ti doped sapphire,” Chem. Phys. Lett. 13, 58–61 (1972).
[CrossRef]

Helv. Phys. Acta (1)

K. Eigenmann, K. Kurtz, H. H. Gunthard, “Solid state reactions and defects in doped verneuil sapphire,” Helv. Phys. Acta 45, 452–480 (1972).

J. Appl. Phys. (3)

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, A. B. Vilaverde, M. R. Kokta, “Room-temperature optical absorption in undoped α-Al2O3,” J. Appl. Phys. 67, 7542–7546 (1990).
[CrossRef]

T. Surek, “Theory of shape stability in crystal growth from the melt,” J. Appl. Phys. 47, 4384–4393 (1976).
[CrossRef]

K. M. Kim, A. B. Dreeben, A. Schujko, “Maximum stable zone length in float-zone growth of small diameter sapphire and silicon crystals,” J. Appl. Phys. 50, 4472–4474 (1979).
[CrossRef]

J. Cryst. Growth (6)

T. Surek, B. Chalmers, “The direction of growth of the surface of a crystal in contact with its melt,” J. Cryst. Growth 29, 1–11 (1975).
[CrossRef]

S. R. Coriell, M. R. Cordes, “Theory of molten zone shape and stability,” J. Cryst. Growth 42, 466–472 (1977).
[CrossRef]

T. Surek, S. R. Coriell, B. Chalmers, “The growth of shaped crystals from the melt,” J. Cryst. Growth 50, 21–32 (1980).
[CrossRef]

A. B. Dreeben, K. M. Kim, A. Schujko, “Measurement of meniscus angle in laser-heated float zone growth of constant diameter sapphire crystals.” J. Cryst. Growth 50, 126–132 (1980).
[CrossRef]

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669–680 (1986).
[CrossRef]

H. E. LaBelle, “EFG the invention and application to sapphire growth,” J. Cryst. Growth 50, 8–17 (1980).
[CrossRef]

J. Mater. Sci. (1)

D. B. Gasson, B. Cockayne, “Oxide crystal growth using gas lasers,” J. Mater. Sci. 5, 100–104 (1970).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 832–833 (1988).

Opt. Eng. (1)

M. E. Thomas, W. J. Tropf, “Vacuum-ultraviolet characterization of sapphire, ALON, and spinel near the band gap,” Opt. Eng. 32, 1340–1343 (1993).
[CrossRef]

Rev. Sci. Instrum. (2)

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

V. Phomsakha, R. S. F. Chang, N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65, 3860–3861 (1994).
[CrossRef]

Solid State Commun. (2)

T. J. Turner, J. H. Crawford, “V centers in single crystal Al2O3,” Solid State Commun. 17, 167–169 (1975).
[CrossRef]

K. H. Lee, G. E. Holmberg, J. H. Crawford, “Hole centers in gamma-irradiated, oxidized Al2O3,” Solid State Commun. 20, 183–185 (1976).
[CrossRef]

Other (13)

R. S. F. Chang, Z. Ge, N. Djeu, “UV-visible transmission characteristics of sapphire fibers grown by laser-heated pedestal growth technique,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 145–150 (1995).

R. S. F. Chang, “Development of high optical quality high temperature sapphire fibers,” (NASA, Langley Research Center, Hampton, Va., 1994).

M. M. Fejer, “Single crystal fibers: growth dynamics and nonlinear optical interactions,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1986).

G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 54–59 (1995)

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of Erbium: YAG laser energy,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 60–70 (1995)

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of Er:YAG laser energy and IR sensor applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., SPIE2677, 35–42 (1996).

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, T. J. Lin, ed., SPIE1104, 244–250 (1989).

R. S. F. Chang, V. Phomsakha, N. Djeu, “Recent advances in sapphire fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE2396, 48–53 (1995).

R. K. Nubling, R. L. Kozodoy, J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., SPIE2131, 56–61 (1994).

J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” . (NASA, Greenbelt, Md., 1972).

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Method for forming refractory fibers by laser energy,” U.S. patent3,944,640 (16March1976).

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Apparatus for forming refractory fibers,” U.S. patent4,012,213 (15March1977).

J. A. Harrington, Selected Papers on Infrared Fiber Optics, Milestone Series, Vol. MS-9 (SPIE Press, Bellingham, Wash., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of laser-heated pedestal growth illustrating the small molten zone produced in an approximate 3:1 source-rod-to-fiber diameter reduction.

Fig. 2
Fig. 2

Schematics of (a) our continuous-feed LHPG apparatus and (b) our reflaxicon optical arrangement. The source rod (as much as 2 m long) is fed through a hole drilled in the table, and the entire system is sealed within an airtight Plexiglas enclosure.

Fig. 3
Fig. 3

Diameter fluctuations in LPHG sapphire fivers with and without active feedback control.

Fig. 4
Fig. 4

Bulk attenuation in sapphire. Open boxes, data taken from Innocenzi et al.30

Fig. 5
Fig. 5

Effective NA of 300-µ-diameter sapphire fiber.

Fig. 6
Fig. 6

Visible IR spectrum of 300-µ-diameter sapphire fiber compared with the bulk data of Innocenzi et al.30

Fig. 7
Fig. 7

Laser measurements of attenuation of a 300-µ-diameter sapphire fiber. The solid curve is a fit to the data when a λ-2 contribution is added to the bulk loss.

Fig. 8
Fig. 8

Scattering loss at 633 nm as a function of distance along two sapphire fibers with different total losses.

Fig. 9
Fig. 9

Spectral loss of 300-µ-diameter sapphire fiber before and after a 12-h anneal in air.

Fig. 10
Fig. 10

Three micrometer absorption peaks in our lowest-loss sapphire fiber.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dsdf=νfνs,
dIs=Ixαsdx.
Ix=1-RI0 exp-αTx,
dIs=αs1-RI0 exp-αTxdx.
Is=αsαT1-RI0expαTD2-exp-αTD2exp-αTx.
Iout=1-R2I0 exp-αTxexp-αTL-x,
αs=αT1-RexpαTL-x+D2-expαTL-x-D2-1IsIout

Metrics