Abstract

We have developed and characterized a novel method of measuring the transient response of third-order optical nonlinearities using degenerate four-wave mixing and a phase-conjugated laser system. Variable compression of laser pulses allows selective probing of a material for thermal effects and faster nonlinearities such as electronic or reorientational effects. We confirm the utility of the system by demonstrating time-scale-dependent nonlinear optical behavior in an organometallic liquid crystal.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Hoffman, “Thermally induced phase conjugation by transient real-time holography: a review,” J. Opt. Soc. Am. B 3, 253–273 (1986).
    [CrossRef]
  2. K. J. McEwan, K. J. Harrison, P. A. Madden, “Polarization and material dependence of degenerate four-wave mixing transients in molecular fluids,” Mol. Phys. 69, 1025–1042 (1990).
    [CrossRef]
  3. S. Guha, K. Kang, P. Porter, J. Roach, D. E. Remy, F. J. Aranda, D. V. G. L. N. Rao, “Third-order optical nonlinearities of metallotetrabenzoporphyrins and a platinum polyyne,” Opt. Lett. 17, 264–266 (1992).
    [CrossRef] [PubMed]
  4. J. Staromlynska, P. B. Chapple, J. R. Davy, T. J. McKay, “A platinum ethynyl compound for optical limiting,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 59–66 (1994).
    [CrossRef]
  5. H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer–Verlag, Berlin, 1986), Chaps. 2 and 3.
  6. I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, (Wiley, New York, 1995), Chaps. 7 and 8.
  7. P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
    [CrossRef]
  8. B. Y. Zeldowich, N. F. Pilipetskii, V. V. Shkunov, “Experimental investigation of wave-front reversal under stimulated scattering,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), Chap. 7.
  9. D. Y. Nosach, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16, 435–442 (1972).
  10. T. D. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5, 516–518 (1980).
    [CrossRef] [PubMed]
  11. C. B. Dane, W. A. Neuman, L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
    [CrossRef]
  12. M. J. Damzen, M. H. R. Hutchinson, “High-efficiency laser-pulse compression by stimulated Brillouin scattering,” Opt. Lett. 8, 313–315 (1983).
    [CrossRef] [PubMed]
  13. During the review process of our paper, the following paper describing a laser system with many similarities to the current study was published: S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–365 (1997).
  14. B. Y. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation, (Springer–Verlag, Berlin, 1985) Chap. 2.
  15. J. Munch, R. F. Wuerker, M. J. LeFebvre, “Interaction length for optical phase conjugation by stimulated Brillouin scattering: an experimental investigation,” Appl. Opt. 28, 3099–3105 (1989).
    [CrossRef] [PubMed]
  16. R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985).
    [CrossRef]
  17. D. A. Rockwell, “A review of phase-conjugate solid state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
    [CrossRef]
  18. N. F. Andreev, E. Khazanov, G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28, 330–341 (1992).
    [CrossRef]
  19. G. Martin, L. K. Lam, R. W. Hellwarth, “Generation of a time-reversed replica of a nonuniformly polarized image-bearing optical beam,” Opt. Lett. 5, 185–187 (1980).
    [CrossRef] [PubMed]
  20. N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, “Picosecond measurements of the third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
    [CrossRef]
  21. J. M. Nunzi, D. Grec, “Picosecond phase conjugation in polydiacetylene gels,” J. Appl. Phys. 62, 2198–2202 (1987).
    [CrossRef]

1997

During the review process of our paper, the following paper describing a laser system with many similarities to the current study was published: S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–365 (1997).

1994

C. B. Dane, W. A. Neuman, L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

1992

S. Guha, K. Kang, P. Porter, J. Roach, D. E. Remy, F. J. Aranda, D. V. G. L. N. Rao, “Third-order optical nonlinearities of metallotetrabenzoporphyrins and a platinum polyyne,” Opt. Lett. 17, 264–266 (1992).
[CrossRef] [PubMed]

N. F. Andreev, E. Khazanov, G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28, 330–341 (1992).
[CrossRef]

1990

K. J. McEwan, K. J. Harrison, P. A. Madden, “Polarization and material dependence of degenerate four-wave mixing transients in molecular fluids,” Mol. Phys. 69, 1025–1042 (1990).
[CrossRef]

1989

1988

D. A. Rockwell, “A review of phase-conjugate solid state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

1987

J. M. Nunzi, D. Grec, “Picosecond phase conjugation in polydiacetylene gels,” J. Appl. Phys. 62, 2198–2202 (1987).
[CrossRef]

1986

1985

R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985).
[CrossRef]

1984

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, “Picosecond measurements of the third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

1983

1980

1979

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[CrossRef]

1972

D. Y. Nosach, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16, 435–442 (1972).

Alfano, R. R.

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[CrossRef]

Andreev, N. F.

N. F. Andreev, E. Khazanov, G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28, 330–341 (1992).
[CrossRef]

Aranda, F. J.

Chapple, P. B.

J. Staromlynska, P. B. Chapple, J. R. Davy, T. J. McKay, “A platinum ethynyl compound for optical limiting,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 59–66 (1994).
[CrossRef]

Damzen, M. J.

Dane, C. B.

C. B. Dane, W. A. Neuman, L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

Davy, J. R.

J. Staromlynska, P. B. Chapple, J. R. Davy, T. J. McKay, “A platinum ethynyl compound for optical limiting,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 59–66 (1994).
[CrossRef]

Eichler, H. J.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer–Verlag, Berlin, 1986), Chaps. 2 and 3.

Faizullov, F. S.

D. Y. Nosach, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16, 435–442 (1972).

Fedosejevs, R.

R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985).
[CrossRef]

Ferrier, J. L.

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, “Picosecond measurements of the third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

Gazengel, J.

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, “Picosecond measurements of the third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

Grec, D.

J. M. Nunzi, D. Grec, “Picosecond phase conjugation in polydiacetylene gels,” J. Appl. Phys. 62, 2198–2202 (1987).
[CrossRef]

Guha, S.

Günter, P.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer–Verlag, Berlin, 1986), Chaps. 2 and 3.

Hackel, L. A.

C. B. Dane, W. A. Neuman, L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

Harrison, K. J.

K. J. McEwan, K. J. Harrison, P. A. Madden, “Polarization and material dependence of degenerate four-wave mixing transients in molecular fluids,” Mol. Phys. 69, 1025–1042 (1990).
[CrossRef]

Hellwarth, R. W.

Ho, P. P.

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[CrossRef]

Hoffman, H. J.

Hogervorst, W.

During the review process of our paper, the following paper describing a laser system with many similarities to the current study was published: S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–365 (1997).

Hon, T. D.

Hutchinson, M. H. R.

Kang, K.

Khazanov, E.

N. F. Andreev, E. Khazanov, G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28, 330–341 (1992).
[CrossRef]

Khoo, I.-C.

I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, (Wiley, New York, 1995), Chaps. 7 and 8.

Lam, L. K.

LeFebvre, M. J.

Madden, P. A.

K. J. McEwan, K. J. Harrison, P. A. Madden, “Polarization and material dependence of degenerate four-wave mixing transients in molecular fluids,” Mol. Phys. 69, 1025–1042 (1990).
[CrossRef]

Martin, G.

McEwan, K. J.

K. J. McEwan, K. J. Harrison, P. A. Madden, “Polarization and material dependence of degenerate four-wave mixing transients in molecular fluids,” Mol. Phys. 69, 1025–1042 (1990).
[CrossRef]

McKay, T. J.

J. Staromlynska, P. B. Chapple, J. R. Davy, T. J. McKay, “A platinum ethynyl compound for optical limiting,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 59–66 (1994).
[CrossRef]

Munch, J.

Neuman, W. A.

C. B. Dane, W. A. Neuman, L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

Nosach, D. Y.

D. Y. Nosach, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16, 435–442 (1972).

Nunzi, J. M.

J. M. Nunzi, D. Grec, “Picosecond phase conjugation in polydiacetylene gels,” J. Appl. Phys. 62, 2198–2202 (1987).
[CrossRef]

Offenberger, A. A.

R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985).
[CrossRef]

Pasmanik, G. A.

N. F. Andreev, E. Khazanov, G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28, 330–341 (1992).
[CrossRef]

Pilipetskii, N. F.

B. Y. Zeldowich, N. F. Pilipetskii, V. V. Shkunov, “Experimental investigation of wave-front reversal under stimulated scattering,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), Chap. 7.

Pilipetsky, N. F.

B. Y. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation, (Springer–Verlag, Berlin, 1985) Chap. 2.

Pohl, D. W.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer–Verlag, Berlin, 1986), Chaps. 2 and 3.

Popovichev, V. I.

D. Y. Nosach, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16, 435–442 (1972).

Porter, P.

Ragul’skii, V. V.

D. Y. Nosach, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16, 435–442 (1972).

Rao, D. V. G. L. N.

Remy, D. E.

Rivoire, G.

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, “Picosecond measurements of the third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

Roach, J.

Rockwell, D. A.

D. A. Rockwell, “A review of phase-conjugate solid state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

Schiemann, S.

During the review process of our paper, the following paper describing a laser system with many similarities to the current study was published: S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–365 (1997).

Shkunov, V. V.

B. Y. Zeldowich, N. F. Pilipetskii, V. V. Shkunov, “Experimental investigation of wave-front reversal under stimulated scattering,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), Chap. 7.

B. Y. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation, (Springer–Verlag, Berlin, 1985) Chap. 2.

Staromlynska, J.

J. Staromlynska, P. B. Chapple, J. R. Davy, T. J. McKay, “A platinum ethynyl compound for optical limiting,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 59–66 (1994).
[CrossRef]

Ubachs, W.

During the review process of our paper, the following paper describing a laser system with many similarities to the current study was published: S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–365 (1997).

Wuerker, R. F.

Xuan, N. P.

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, “Picosecond measurements of the third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

Zel’dovich, B. Y.

B. Y. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation, (Springer–Verlag, Berlin, 1985) Chap. 2.

Zeldowich, B. Y.

B. Y. Zeldowich, N. F. Pilipetskii, V. V. Shkunov, “Experimental investigation of wave-front reversal under stimulated scattering,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), Chap. 7.

Appl. Opt.

IEEE J. Quantum Electron.

R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. QE-21, 1558–1562 (1985).
[CrossRef]

D. A. Rockwell, “A review of phase-conjugate solid state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

N. F. Andreev, E. Khazanov, G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28, 330–341 (1992).
[CrossRef]

C. B. Dane, W. A. Neuman, L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

During the review process of our paper, the following paper describing a laser system with many similarities to the current study was published: S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator–amplifier setup,” IEEE J. Quantum Electron. 33, 358–365 (1997).

J. Appl. Phys.

J. M. Nunzi, D. Grec, “Picosecond phase conjugation in polydiacetylene gels,” J. Appl. Phys. 62, 2198–2202 (1987).
[CrossRef]

J. Opt. Soc. Am. B

Mol. Phys.

K. J. McEwan, K. J. Harrison, P. A. Madden, “Polarization and material dependence of degenerate four-wave mixing transients in molecular fluids,” Mol. Phys. 69, 1025–1042 (1990).
[CrossRef]

Opt. Commun.

N. P. Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, “Picosecond measurements of the third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

Opt. Lett.

Phys. Rev. A

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[CrossRef]

Sov. Phys. JETP

D. Y. Nosach, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16, 435–442 (1972).

Other

B. Y. Zeldowich, N. F. Pilipetskii, V. V. Shkunov, “Experimental investigation of wave-front reversal under stimulated scattering,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), Chap. 7.

J. Staromlynska, P. B. Chapple, J. R. Davy, T. J. McKay, “A platinum ethynyl compound for optical limiting,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE2229, 59–66 (1994).
[CrossRef]

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer–Verlag, Berlin, 1986), Chaps. 2 and 3.

I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, (Wiley, New York, 1995), Chaps. 7 and 8.

B. Y. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation, (Springer–Verlag, Berlin, 1985) Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Platinum ethynyl complex.

Fig. 2
Fig. 2

Experimental setup showing the laser system and four-wave mixing details: HWP, halfwave plate; Q, quarter-wave plate; D, detector; BS, beam splitter.

Fig. 3
Fig. 3

Spatial beam profiles: (a) conventional mirror, (b) SBS mirror. Note that the vertical axes were normalized for illustrative purposes. The horizontal scales are the same for both profiles. The energy content in beam (b) is 88% of that of beam (a).

Fig. 4
Fig. 4

Pulse length results. All the pulses were normalised in power to indicate temporal shape. The dotted curve indicates the oscillator pulse. The solid curves show the pulses obtained with the long and short cells. The broken curves show the pulses obtained by varying the focal length and energy into the long cell.

Fig. 5
Fig. 5

DFWM return signals for (a) and (b) carbon disulfide and (c) and (d) platinum ethynyl. Both (a) and (c) show short pulse returns and (b) and (d) show long pulse returns. Pulses were normalized in power to emphasize temporal shape.

Tables (2)

Tables Icon

Table 1 Dimensions of SBS Cellsa

Tables Icon

Table 2 Pulse Compression Results and Laser System Outputa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ithgl=C,

Metrics