Abstract

A new geometry for grating-tuned cavities that reduces optical losses from the gratings, lowers the lasing threshold, and enhances the laser output is described and tested. We achieved these enhancements by feeding back into the cavity light that is normally lost through grating reflections. The new geometry is tested on two grazing-incidence dye laser cavities: one that resembles a Littman–Metcalf design and demonstrates the essential principle of the new arrangement, and one that introduces modifications necessary to allow single-longitudinal-mode operation without mode hopping over a tuning range of ∼15 cm-1.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895–898 (1972).
    [CrossRef] [PubMed]
  2. R. Wallenstein, T. W. Hänsch, “Linear pressure tuning of a mutielement dye laser spectrometer,” Appl. Opt. 13, 1625–1628 (1974).
    [CrossRef] [PubMed]
  3. M. G. Littman, H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
    [CrossRef] [PubMed]
  4. I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
    [CrossRef]
  5. M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138–140 (1978).
    [CrossRef] [PubMed]
  6. K. Liu, M. G. Littman, “Novel geometry for single-mode scaning of tunable lasers,” Opt. Lett. 6, 117–118 (1981).
    [CrossRef] [PubMed]
  7. M. G. Littman, “Single-mode pulsed tunable dye laser,” Appl. Opt. 23, 4465–4468 (1984).
    [CrossRef] [PubMed]
  8. M. G. Littman, J. Montgomery, “Grazing-incidence designs for improved pulsed dye lasers,” Laser Focus 24(2), 70–86 (1988).
  9. G. Z. Zhang, K. Hakuta, “Scanning geometry for broadly tunable single-mode pulsed dye lasers,” Opt. Lett. 17, 997–999 (1992).
    [CrossRef] [PubMed]
  10. F. P. Roullard, “Resonators with transverse mode control for high gain waveguide lasers,” Ph.D. dissertation (University of Southern California, Los Angeles, 1975), pp. 143–159.
  11. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), pp. 147–148; P. W. Milloni, J. H. Eberly, Lasers (Wiley, New York, 1989), pp. 291–295.
  12. J. E. Bernard, V. D. Lokhnygin, A. J. Alcock, “Grating-tuned, single-longitudinal-mode, diode-pumped Nd:YVO4 laser,” Opt. Lett. 18, 2020–2022 (1993).
    [CrossRef]
  13. K. W. Kangas, D. D. Lowenthal, C. H. Muller, “Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator,” Opt. Lett. 14, 21–23 (1989).
    [CrossRef] [PubMed]
  14. P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
    [CrossRef]
  15. B. C. Johnson, V. J. Newell, J. B. Clark, E. S. McPhee, “Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications,” J. Opt. Soc. Am. B 12, 2122–2127 (1995).
    [CrossRef]
  16. L. A. W. Gloster, I. T. McKinnie, Z. X. Jiang, T. A. King, J. M. Boon-Engering, W. E. van der Veer, W. Hogervorst, “Narrow-band β-BaB2O4 optical parametric oscillator in a grazing-incidence configuration,” J. Opt. Soc. Am. B 12, 2117–2121 (1995).
    [CrossRef]

1995

1993

1992

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

G. Z. Zhang, K. Hakuta, “Scanning geometry for broadly tunable single-mode pulsed dye lasers,” Opt. Lett. 17, 997–999 (1992).
[CrossRef] [PubMed]

1989

1988

M. G. Littman, J. Montgomery, “Grazing-incidence designs for improved pulsed dye lasers,” Laser Focus 24(2), 70–86 (1988).

1984

1981

1978

1977

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

1974

1972

Alcock, A. J.

Bernard, J. E.

Beyea, D. M.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Boon-Engering, J. M.

Chelnokov, A. V.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Clark, J. B.

Danon, N. N.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Gavrilovic, P.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Gloster, L. A. W.

Hakuta, K.

Hänsch, T. W.

Hogervorst, W.

Jiang, Z. X.

Johnson, B. C.

Kangas, K. W.

King, T. A.

Littman, M. G.

Liu, K.

Lokhnygin, V. D.

Lowenthal, D. D.

McKinnie, I. T.

McPhee, E. S.

Metcalf, H. J.

Montgomery, J.

M. G. Littman, J. Montgomery, “Grazing-incidence designs for improved pulsed dye lasers,” Laser Focus 24(2), 70–86 (1988).

Muller, C. H.

Newell, V. J.

O’Neill, M. S.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Oppenheim, U. P.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Roullard, F. P.

F. P. Roullard, “Resonators with transverse mode control for high gain waveguide lasers,” Ph.D. dissertation (University of Southern California, Los Angeles, 1975), pp. 143–159.

Shoshan, I.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

van der Veer, W. E.

Wallenstein, R.

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), pp. 147–148; P. W. Milloni, J. H. Eberly, Lasers (Wiley, New York, 1989), pp. 291–295.

Zhang, G. Z.

Appl. Opt.

Appl. Phys. Lett.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

J. Appl. Phys.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

J. Opt. Soc. Am. B

Laser Focus

M. G. Littman, J. Montgomery, “Grazing-incidence designs for improved pulsed dye lasers,” Laser Focus 24(2), 70–86 (1988).

Opt. Lett.

Other

F. P. Roullard, “Resonators with transverse mode control for high gain waveguide lasers,” Ph.D. dissertation (University of Southern California, Los Angeles, 1975), pp. 143–159.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), pp. 147–148; P. W. Milloni, J. H. Eberly, Lasers (Wiley, New York, 1989), pp. 291–295.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagrams of the étalon-feedback geometry for lasing threshold reduction. (a) The modified geometry applied to the Littman–Metcalf cavity3 (with D representing the former discarded beam). (b) The new geometry used to generate tunable, single-mode laser radiation.

Fig. 2
Fig. 2

(a) Calculated cavity loss versus grating diffraction efficiency. Solid and dashed curves represent the calculated loss values of L a ′ and L a , respectively. (b) Measured laser output energy as a function of the pump energy from the 308-nm XeCl laser. Rectangles show the averaged output with feedback and circles represent output without feedback. The bars represent energy fluctuations of the measured pulses.

Fig. 3
Fig. 3

(a) Observed single-mode laser output as a function of the pump energy from the 308-nm XeCl laser. Rectangles show the averaged output energy with feedback and circles show the average output energy without feedback. The bars represent energy fluctuations of the measured pulses. SLM, single-longitudinal mode. (b) Typical interference pattern obtained from the single-mode laser beam. (c) Observed interference pattern when the laser was tuned slightly out of the single-mode range. (d) Typical temporal profiles obtained for the single-mode laser beam. Solid and dashed curves represent the profiles with and without feedback, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

La=-2 lnR1R21/2Rd,
La=-2 lnR1R21/2Rd+2 ln1-R2R3Rr,
L0=OG¯ sin θ0+M1G¯OG¯+M1G¯,

Metrics