Abstract

Absorption and fluorescence spectra of Nd3+ were measured in potassium tantalum gallate, lead bismuth gallate (PBG), fluorozirconate (ZBLAN), and Ge-Ga-S glasses. A Judd–Ofelt analysis was performed to determine the spontaneous emission probability and stimulated emission cross section of the 4F3/24I11/2 transition of Nd3+. Raman spectra were studied to clarify the maximum phonon energies of the glasses. The fluorescence of the 1G43H5 transition of Pr3+ in a dehydrated PBG glass was observed for the first time to our knowledge. The PBG glass has a higher quantum efficiency than that of ZBLAN glass based on the Judd–Ofelt analysis.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
    [CrossRef]
  2. Y. Oishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, G. H. Sigel, “Pr3+-doped fluoride fiber amplifier operating at 1.31 µm,” Opt. Lett. 16, 1747–1749 (1991).
    [CrossRef]
  3. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, G. H. Sigel, “Pr3+ -doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
    [CrossRef]
  4. S. Tanabe, K. Hirao, N. Soga, “Upconversion fluorescences of TeO2 - and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
    [CrossRef]
  5. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  6. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  7. H. Takebe, Y. Nageno, K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78, 1161–1168 (1995).
    [CrossRef]
  8. M. J. Weber, J. D. Myers, D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
    [CrossRef]
  9. X. Zou, T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993);X. Zou, H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
    [CrossRef]
  10. H. Lin, L. W. Dechent, D. E. Day, J. O. Stoffer, “IR transmission and corrosion of lead-bismuth gallate glasses,” J. Non-Cryst. Solids 171, 299–303 (1994).
    [CrossRef]
  11. W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
    [CrossRef]
  12. T. Kokubo, Y. Inaka, S. Sakka, “Glass formation and optical properties of glasses in the systems (R2O or R′O)-Ta2O5-Ga2O3,” J. Non-Cryst. Solids 80, 518–526 (1986).
    [CrossRef]
  13. F. Miyaji, S. Sakka, “Structure of PbO-Bi2O3-Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991).
    [CrossRef]
  14. J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3 µm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
    [CrossRef]
  15. R. S. Quimby, K. T. Gahagan, B. G. Aitken, M. A. Newhouse, “Self-calibrating quantum efficiency measurement technique and application to Pr3+-doped sulfide glass,” Opt. Lett. 20, 2021–2023 (1995).
    [CrossRef] [PubMed]
  16. D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
    [CrossRef]
  17. K. Abe, H. Takebe, K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212, 143–150 (1997).
    [CrossRef]

1997 (1)

K. Abe, H. Takebe, K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212, 143–150 (1997).
[CrossRef]

1995 (3)

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, G. H. Sigel, “Pr3+ -doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

H. Takebe, Y. Nageno, K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78, 1161–1168 (1995).
[CrossRef]

R. S. Quimby, K. T. Gahagan, B. G. Aitken, M. A. Newhouse, “Self-calibrating quantum efficiency measurement technique and application to Pr3+-doped sulfide glass,” Opt. Lett. 20, 2021–2023 (1995).
[CrossRef] [PubMed]

1994 (3)

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3 µm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

H. Lin, L. W. Dechent, D. E. Day, J. O. Stoffer, “IR transmission and corrosion of lead-bismuth gallate glasses,” J. Non-Cryst. Solids 171, 299–303 (1994).
[CrossRef]

1993 (2)

X. Zou, T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993);X. Zou, H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[CrossRef]

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

1991 (2)

1990 (1)

S. Tanabe, K. Hirao, N. Soga, “Upconversion fluorescences of TeO2 - and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

1986 (1)

T. Kokubo, Y. Inaka, S. Sakka, “Glass formation and optical properties of glasses in the systems (R2O or R′O)-Ta2O5-Ga2O3,” J. Non-Cryst. Solids 80, 518–526 (1986).
[CrossRef]

1981 (1)

M. J. Weber, J. D. Myers, D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

1974 (1)

W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Abe, K.

K. Abe, H. Takebe, K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212, 143–150 (1997).
[CrossRef]

Aitken, B. G.

Baro, M. D.

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Blackburn, D. H.

M. J. Weber, J. D. Myers, D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Brocklesby, W. S.

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Brown, R. S.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

da Silva, V. L.

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3 µm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Day, D. E.

H. Lin, L. W. Dechent, D. E. Day, J. O. Stoffer, “IR transmission and corrosion of lead-bismuth gallate glasses,” J. Non-Cryst. Solids 171, 299–303 (1994).
[CrossRef]

Dechent, L. W.

H. Lin, L. W. Dechent, D. E. Day, J. O. Stoffer, “IR transmission and corrosion of lead-bismuth gallate glasses,” J. Non-Cryst. Solids 171, 299–303 (1994).
[CrossRef]

Deol, R. S.

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Gahagan, K. T.

Hewak, D. W.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Hirao, K.

S. Tanabe, K. Hirao, N. Soga, “Upconversion fluorescences of TeO2 - and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

Inaka, Y.

T. Kokubo, Y. Inaka, S. Sakka, “Glass formation and optical properties of glasses in the systems (R2O or R′O)-Ta2O5-Ga2O3,” J. Non-Cryst. Solids 80, 518–526 (1986).
[CrossRef]

Izumitani, T.

X. Zou, T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993);X. Zou, H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[CrossRef]

Jackel, J. L.

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3 µm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Jedrzejewski, K. P.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

Jha, A.

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kanamori, T.

Kitagawa, T.

Kokubo, T.

T. Kokubo, Y. Inaka, S. Sakka, “Glass formation and optical properties of glasses in the systems (R2O or R′O)-Ta2O5-Ga2O3,” J. Non-Cryst. Solids 80, 518–526 (1986).
[CrossRef]

Krupke, W. F.

W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
[CrossRef]

Laming, R. I.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Lin, H.

H. Lin, L. W. Dechent, D. E. Day, J. O. Stoffer, “IR transmission and corrosion of lead-bismuth gallate glasses,” J. Non-Cryst. Solids 171, 299–303 (1994).
[CrossRef]

Machewirth, D. P.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, G. H. Sigel, “Pr3+ -doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Medeiros Neto, J. A.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Miyaji, F.

F. Miyaji, S. Sakka, “Structure of PbO-Bi2O3-Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991).
[CrossRef]

Morinaga, K.

K. Abe, H. Takebe, K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212, 143–150 (1997).
[CrossRef]

H. Takebe, Y. Nageno, K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78, 1161–1168 (1995).
[CrossRef]

Myers, J. D.

M. J. Weber, J. D. Myers, D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Nageno, Y.

H. Takebe, Y. Nageno, K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78, 1161–1168 (1995).
[CrossRef]

Newhouse, M. A.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Oishi, Y.

Otero, S.

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Payne, D. N.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Poulain, M.

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Quimby, R. S.

Sakka, S.

F. Miyaji, S. Sakka, “Structure of PbO-Bi2O3-Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991).
[CrossRef]

T. Kokubo, Y. Inaka, S. Sakka, “Glass formation and optical properties of glasses in the systems (R2O or R′O)-Ta2O5-Ga2O3,” J. Non-Cryst. Solids 80, 518–526 (1986).
[CrossRef]

Samson, B.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

Samson, B. N.

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Sigel, G. H.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, G. H. Sigel, “Pr3+ -doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Y. Oishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, G. H. Sigel, “Pr3+-doped fluoride fiber amplifier operating at 1.31 µm,” Opt. Lett. 16, 1747–1749 (1991).
[CrossRef]

Silberberg, Y.

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3 µm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Snitzer, E.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, G. H. Sigel, “Pr3+ -doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3 µm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Y. Oishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, G. H. Sigel, “Pr3+-doped fluoride fiber amplifier operating at 1.31 µm,” Opt. Lett. 16, 1747–1749 (1991).
[CrossRef]

Soga, N.

S. Tanabe, K. Hirao, N. Soga, “Upconversion fluorescences of TeO2 - and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

Stoffer, J. O.

H. Lin, L. W. Dechent, D. E. Day, J. O. Stoffer, “IR transmission and corrosion of lead-bismuth gallate glasses,” J. Non-Cryst. Solids 171, 299–303 (1994).
[CrossRef]

Surinach, S.

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Takahashi, S.

Takebe, H.

K. Abe, H. Takebe, K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212, 143–150 (1997).
[CrossRef]

H. Takebe, Y. Nageno, K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78, 1161–1168 (1995).
[CrossRef]

Tanabe, S.

S. Tanabe, K. Hirao, N. Soga, “Upconversion fluorescences of TeO2 - and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

Taylor, E.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

Vogel, E. M.

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3 µm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Wang, J.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3 µm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Weber, M. J.

M. J. Weber, J. D. Myers, D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Wei, K.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, G. H. Sigel, “Pr3+ -doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Wenzel, J.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, G. H. Sigel, “Pr3+ -doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Wylangowski, G.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

Zou, X.

X. Zou, T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993);X. Zou, H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[CrossRef]

Electron. Lett. (1)

D. W. Hewak, R. S. Deol, J. Wang, G. Wylangowski, J. A. Medeiros Neto, B. N. Samson, R. I. Laming, W. S. Brocklesby, D. N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M. D. Baro, “Low phonon-energy glasses for efficient 1.3 µm optical fibre amplifiers,” Electron. Lett. 29, 237–238 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, D. N. Payne, “Quantum-efficiency of praseodymium doped Ga: La: S glass for 1.3 µm optical fibre amplifiers,” IEEE Photon. Technol. Lett. 6, 609–612 (1994).
[CrossRef]

J. Am. Ceram. Soc. (1)

H. Takebe, Y. Nageno, K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78, 1161–1168 (1995).
[CrossRef]

J. Appl. Phys. (1)

M. J. Weber, J. D. Myers, D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

J. Non-Cryst. Solids (8)

K. Abe, H. Takebe, K. Morinaga, “Preparation and properties of Ge-Ga-S glasses for laser hosts,” J. Non-Cryst. Solids 212, 143–150 (1997).
[CrossRef]

T. Kokubo, Y. Inaka, S. Sakka, “Glass formation and optical properties of glasses in the systems (R2O or R′O)-Ta2O5-Ga2O3,” J. Non-Cryst. Solids 80, 518–526 (1986).
[CrossRef]

F. Miyaji, S. Sakka, “Structure of PbO-Bi2O3-Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991).
[CrossRef]

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3 µm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

X. Zou, T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993);X. Zou, H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[CrossRef]

H. Lin, L. W. Dechent, D. E. Day, J. O. Stoffer, “IR transmission and corrosion of lead-bismuth gallate glasses,” J. Non-Cryst. Solids 171, 299–303 (1994).
[CrossRef]

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, G. H. Sigel, “Pr3+ -doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

S. Tanabe, K. Hirao, N. Soga, “Upconversion fluorescences of TeO2 - and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption spectra of Nd3+ in (a) KTG, (b) PBG, (c) ZBLAN, and (d) GGS glasses. All transitions are from the 4I9/2 level to the following levels: (1) 4F3/2; (2) 4F5/2, 2H9/2; (3) 4F7/2, 4S3/2; (4) 4F9/2; (5) 4G5/2, 2G7/2; (6) 2K13/2, 4G7/2, 4G9/2; (7) 4G11/2, 2G9/2, 2D3/2, 2K15/2; and (8) 2P1/2, 2D5/2.

Fig. 3
Fig. 3

Raman spectra of (a) KTG, (b) PBG, (c) ZBLAN, and (d) GGS glasses.

Fig. 2
Fig. 2

4F3/24I11/2 fluorescence spectra of Nd3+ in (a) KTG, (b) PBG, (c) ZBLAN, and (d) GGS glasses.

Fig. 4
Fig. 4

Fluorescence spectrum of Pr3+ in dehydrated PBG glass.

Tables (2)

Tables Icon

Table 1 Radiative Properties of Nd3+ in KTG, PBG, ZBLAN, and GGS Glasses

Tables Icon

Table 2 Judd-Ofelt Parameters of Pr3+, Radiative Lifetime from the 1G4 Level, Measured Fluorescence Lifetime, and Quantum Efficiency of 1G43H5 for Low Phonon Energy Glasses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

AS, LJ:S, LJ=64π4e2n3h2J+1λ-3n2+229×t=2,4,6ΩtS, LJUtS, LJ2,
σp=λp48πcn2A4F3/24I11/2Δλeff,

Metrics