Abstract

At the University of Rochester we have constructed and tested a large-aperture, (1.0 × 6.5 cm), high-gain (8) Brewster’s angle zigzag Nd:glass amplifier with a repetition rate of 2 Hz. This amplifier has a gain uniformity of ±3% and a maximum stress-induced depolarization <2.5%.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Chernoch, S. W. Martin, “Multiple internal reflection face-pumped laser,” U.S. patent3,633,126 (17April1969).
  2. R. L. Byer, “Slab geometry lasers,” presented at the International Lasers and Electro-Optic Exhibition, Tokyo, Japan, 26 January 1985.
  3. R. L. Byer, “Improved solid-state laser sources,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).
  4. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser—Part 1. Theory,” IEEE J. Quantum Electron. QE-20, 289–301 (1984).
    [CrossRef]
  5. T. J. Kane, J. M. Eggleston, R. L. Byer, “The slab geometry laser—Part II. Thermal effects in a finite slab,” IEEE J. Quantum Electron. QE-21, 1195–1210 (1985).
    [CrossRef]
  6. J. M. Eggleston, G. F. Albrecht, R. A. Petr, J. F. Zumdieck, “A high average power dual slab Nd-glass zigzag laser system,” IEEE J. Quantum Electron. 22, 2092–2098 (1986).
    [CrossRef]
  7. The largest body of research was described at the Lawrence Livermore National Laboratory Medium-Average Power Conferences. Compendia of that research appear in the Lawrence Livermore National Laboratory Laser Program Annual Reports (Lawrence Livermore National Laboratory, Livermore, Calif., 1985–1987).
  8. Product of Hoya Optics, Inc., 3400 Edison Way, Fremont, Calif. 94538. Use of a particular product does indicate endorsement by the University of Rochester.
  9. D. C. Brown, “Glass laser physics,” in High-Peak-Power Nd:Glass Laser Systems, Springer Series in Optical Sciences, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1981), Vol. 25, p. 45.
  10. J. H. Kelly, D. C. Brown, J. A. Abate, K. Teegarden, “Dynamic pumping model for amplifier performance predictions,” Appl. Opt. 20, 1595–1605 (1981).
    [CrossRef] [PubMed]
  11. M. J. Minot, “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 µ,” J. Opt. Soc. Am. 66, 515–519 (1976).
    [CrossRef]
  12. L. M. Cook, W. H. Lowdermilk, D. Milam, J. E. Swain, “Antireflective surfaces for high-energy laser optics formed by neutral-solution processing,” Appl. Opt. 21, 1482–1485 (1982).
    [CrossRef] [PubMed]
  13. W. W. Simmons, W. E. Warren, “Modelling and simulation of large solid state laser systems,” in Modeling and Simulation of Optoelectronic Systems, J. D. O’Keefe, ed., Proc. SPIE642, 166–172 (1986).Available as a (1986).
    [CrossRef]
  14. C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
    [CrossRef]
  15. This is conservative. Preferential deposition of energy near the slab faces that is due to Beer’s law absorption helps the thermal loading problem. See J. B. Trenholme, “Temperature and stress in a pumped glass slab,” Lawrence Livermore National Laboratory Laser Program Annual Report 1982, (Lawrence Livermore National Laboratory, Livermore, Calif., 1983), pp. 7-112–7-114.
  16. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986).
    [CrossRef]
  17. M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flashlamp-pumped Nd:YAG and Nd-doped phosphate laser glasses,” IEEE J. Quantum Electron. QE-22, 574–580 (1986).
    [CrossRef]
  18. K. A. Cerqua, M. J. Shoup, D. L. Smith, S. D. Jacobs, J. H. Kelly, “Strengthened phosphate glass in a high rep rate active-mirror amplifier geometry,” Appl. Opt. 27, 2567–2572 (1988).
    [CrossRef] [PubMed]
  19. J. Rinefierd, S. D. Jacobs, D. Brown, J. Abate, O. Lewis, H. Applebaum, “Liquids for high repetition rate glass laser systems,” in Laser-Induced Damage in Optical Materials: 1978, Natl. Bur. Stand. (U.S.) Spec. Publ. 541 (U.S. GPO, Washington, D.C., 1979), pp. 109–121.
  20. W. F. Hagen, M. O. Riley, “Evanescent-wave control,” Lawrence Livermore National Laboratory Laser Program Annual Report 1985, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986), pp. 9-69–9-77.
  21. M. A. Summers, “We have developed a set of 3-D models which can be used to design zig-zag slab amplifiers,” presented at the Medium Average Power Solid-State Laser Technical Information Seminar, Lawrence Livermore National Laboratory, Livermore, Calif., 4 November 1988, pp. 6-1–6-31.
  22. Hoya Optics, Inc., product literature, 3400 Edison Way, Fremont, Calif. 94538.
  23. The code used here is an upgraded version of the zap Laser Analysis Program written by J. H. Alexander, M. Froost, J. E. Welch, Advanced Research Projects Agency Order 660, Contract N00014-70-C-0341 (Systems, Science and Software, La Jolla, Calif., June1971).
  24. A. C. Erlandson, “Pulse length scaling,” Lawrence Livermore National Laboratory Laser Program Annual Report 1985, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986), pp. 7-18–7-25.
  25. Technical Bulletin 2, ILC Technology, 399 Java Drive, Sunnyvale, Calif. 94089.
  26. Product of Corning Glass Works, Corning, N.Y. 14831.
  27. J. H. Kelly, D. L. Smith, J.-C. Lee, S. D. Jacobs, M. J. Shoup, D. J. Smith, “Improved active mirror geometry Cr:Nd:GSGG amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 380.
  28. W. M. Kays, M. E. Crawford, Convective Heat and Mass Transfer, 2nd ed. (McGraw-Hill, New York, 1980), p. 245.
  29. F. P. Incropera, D. P. Dewitt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 1985), p. 429.
  30. J. M. Eggleston, M. J. Kushner, “Stimulated Brillouin scattering parasitics in large optical windows,” Opt. Lett. 12, 410–412 (1987).
    [CrossRef] [PubMed]
  31. J. F. Reintjes, “Stimulated Raman and Brillouin scattering,” in CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, Boca Raton, Fl., 1995), Sec. 8, p. 358, Table 8.3.7.
  32. These numbers were taken from Ref. 29 and corrected by the factor cos(π/4) to obtain the transverse gain.
  33. W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.
  34. J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, “Slab-geometry Nd:glass laser performance studies,” Opt. Lett. 7, 405–407 (1982).
    [CrossRef] [PubMed]
  35. Product of General Electric Company, Silicon Products Division, Naperville, Ill. 60540.
  36. G. J. DeSalvo, J. A. Swanson, “ANSYS engineering analysis system user’s manual,” Swanson Analysis Systems, Inc. (1June1985). (ansys is a registered trademark of Swanson Analysis Systems, Inc., Johnson Road, Houston, Pa. 15342.)
  37. Product of United Detector Technologies, 12525 Chadron Avenue, Hawthorne, Calif. 90250.
  38. Product of Amoco Laser Company, 1251 Frontenac Road, Naperville, Ill. 60540.
  39. Product of Schott Technologies, Inc., 400 York Avenue, Duryea, Pa. 18462.
  40. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  41. “High-power laser interferometry,” Laboratory for Laser Energetics (LLE) Review 31, available as NTIS document DOE/DP/40200-47 (National Technical Information Service, Springfield, Va., 1987), pp. 114–123.
  42. R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981).
    [CrossRef]

1995

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

1988

1987

1986

W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986).
[CrossRef]

M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flashlamp-pumped Nd:YAG and Nd-doped phosphate laser glasses,” IEEE J. Quantum Electron. QE-22, 574–580 (1986).
[CrossRef]

J. M. Eggleston, G. F. Albrecht, R. A. Petr, J. F. Zumdieck, “A high average power dual slab Nd-glass zigzag laser system,” IEEE J. Quantum Electron. 22, 2092–2098 (1986).
[CrossRef]

1985

T. J. Kane, J. M. Eggleston, R. L. Byer, “The slab geometry laser—Part II. Thermal effects in a finite slab,” IEEE J. Quantum Electron. QE-21, 1195–1210 (1985).
[CrossRef]

1984

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser—Part 1. Theory,” IEEE J. Quantum Electron. QE-20, 289–301 (1984).
[CrossRef]

1982

1981

J. H. Kelly, D. C. Brown, J. A. Abate, K. Teegarden, “Dynamic pumping model for amplifier performance predictions,” Appl. Opt. 20, 1595–1605 (1981).
[CrossRef] [PubMed]

R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981).
[CrossRef]

1976

Abate, J.

J. Rinefierd, S. D. Jacobs, D. Brown, J. Abate, O. Lewis, H. Applebaum, “Liquids for high repetition rate glass laser systems,” in Laser-Induced Damage in Optical Materials: 1978, Natl. Bur. Stand. (U.S.) Spec. Publ. 541 (U.S. GPO, Washington, D.C., 1979), pp. 109–121.

Abate, J. A.

Albrecht, G. F.

J. M. Eggleston, G. F. Albrecht, R. A. Petr, J. F. Zumdieck, “A high average power dual slab Nd-glass zigzag laser system,” IEEE J. Quantum Electron. 22, 2092–2098 (1986).
[CrossRef]

Applebaum, H.

J. Rinefierd, S. D. Jacobs, D. Brown, J. Abate, O. Lewis, H. Applebaum, “Liquids for high repetition rate glass laser systems,” in Laser-Induced Damage in Optical Materials: 1978, Natl. Bur. Stand. (U.S.) Spec. Publ. 541 (U.S. GPO, Washington, D.C., 1979), pp. 109–121.

Brown, D.

J. Rinefierd, S. D. Jacobs, D. Brown, J. Abate, O. Lewis, H. Applebaum, “Liquids for high repetition rate glass laser systems,” in Laser-Induced Damage in Optical Materials: 1978, Natl. Bur. Stand. (U.S.) Spec. Publ. 541 (U.S. GPO, Washington, D.C., 1979), pp. 109–121.

Brown, D. C.

J. H. Kelly, D. C. Brown, J. A. Abate, K. Teegarden, “Dynamic pumping model for amplifier performance predictions,” Appl. Opt. 20, 1595–1605 (1981).
[CrossRef] [PubMed]

D. C. Brown, “Glass laser physics,” in High-Peak-Power Nd:Glass Laser Systems, Springer Series in Optical Sciences, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1981), Vol. 25, p. 45.

Byer, R. L.

T. J. Kane, J. M. Eggleston, R. L. Byer, “The slab geometry laser—Part II. Thermal effects in a finite slab,” IEEE J. Quantum Electron. QE-21, 1195–1210 (1985).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser—Part 1. Theory,” IEEE J. Quantum Electron. QE-20, 289–301 (1984).
[CrossRef]

J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, “Slab-geometry Nd:glass laser performance studies,” Opt. Lett. 7, 405–407 (1982).
[CrossRef] [PubMed]

R. L. Byer, “Slab geometry lasers,” presented at the International Lasers and Electro-Optic Exhibition, Tokyo, Japan, 26 January 1985.

R. L. Byer, “Improved solid-state laser sources,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).

Caird, J. A.

Cerqua, K. A.

Chernoch, J. P.

J. P. Chernoch, S. W. Martin, “Multiple internal reflection face-pumped laser,” U.S. patent3,633,126 (17April1969).

Cook, L. M.

Crawford, M. E.

W. M. Kays, M. E. Crawford, Convective Heat and Mass Transfer, 2nd ed. (McGraw-Hill, New York, 1980), p. 245.

Craxton, R. S.

R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981).
[CrossRef]

Dane, C. B.

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Dewitt, D. P.

F. P. Incropera, D. P. Dewitt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 1985), p. 429.

Eggleston, J. M.

J. M. Eggleston, M. J. Kushner, “Stimulated Brillouin scattering parasitics in large optical windows,” Opt. Lett. 12, 410–412 (1987).
[CrossRef] [PubMed]

J. M. Eggleston, G. F. Albrecht, R. A. Petr, J. F. Zumdieck, “A high average power dual slab Nd-glass zigzag laser system,” IEEE J. Quantum Electron. 22, 2092–2098 (1986).
[CrossRef]

T. J. Kane, J. M. Eggleston, R. L. Byer, “The slab geometry laser—Part II. Thermal effects in a finite slab,” IEEE J. Quantum Electron. QE-21, 1195–1210 (1985).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser—Part 1. Theory,” IEEE J. Quantum Electron. QE-20, 289–301 (1984).
[CrossRef]

J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, “Slab-geometry Nd:glass laser performance studies,” Opt. Lett. 7, 405–407 (1982).
[CrossRef] [PubMed]

Erlandson, A. C.

A. C. Erlandson, “Pulse length scaling,” Lawrence Livermore National Laboratory Laser Program Annual Report 1985, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986), pp. 7-18–7-25.

Hackel, L. A.

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Hagen, W. F.

W. F. Hagen, M. O. Riley, “Evanescent-wave control,” Lawrence Livermore National Laboratory Laser Program Annual Report 1985, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986), pp. 9-69–9-77.

Ina, H.

Incropera, F. P.

F. P. Incropera, D. P. Dewitt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 1985), p. 429.

Jacobs, S. D.

K. A. Cerqua, M. J. Shoup, D. L. Smith, S. D. Jacobs, J. H. Kelly, “Strengthened phosphate glass in a high rep rate active-mirror amplifier geometry,” Appl. Opt. 27, 2567–2572 (1988).
[CrossRef] [PubMed]

J. H. Kelly, D. L. Smith, J.-C. Lee, S. D. Jacobs, M. J. Shoup, D. J. Smith, “Improved active mirror geometry Cr:Nd:GSGG amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 380.

J. Rinefierd, S. D. Jacobs, D. Brown, J. Abate, O. Lewis, H. Applebaum, “Liquids for high repetition rate glass laser systems,” in Laser-Induced Damage in Optical Materials: 1978, Natl. Bur. Stand. (U.S.) Spec. Publ. 541 (U.S. GPO, Washington, D.C., 1979), pp. 109–121.

Kaiser, W.

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.

Kane, T. J.

T. J. Kane, J. M. Eggleston, R. L. Byer, “The slab geometry laser—Part II. Thermal effects in a finite slab,” IEEE J. Quantum Electron. QE-21, 1195–1210 (1985).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser—Part 1. Theory,” IEEE J. Quantum Electron. QE-20, 289–301 (1984).
[CrossRef]

J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, “Slab-geometry Nd:glass laser performance studies,” Opt. Lett. 7, 405–407 (1982).
[CrossRef] [PubMed]

Kays, W. M.

W. M. Kays, M. E. Crawford, Convective Heat and Mass Transfer, 2nd ed. (McGraw-Hill, New York, 1980), p. 245.

Kelly, J. H.

K. A. Cerqua, M. J. Shoup, D. L. Smith, S. D. Jacobs, J. H. Kelly, “Strengthened phosphate glass in a high rep rate active-mirror amplifier geometry,” Appl. Opt. 27, 2567–2572 (1988).
[CrossRef] [PubMed]

J. H. Kelly, D. C. Brown, J. A. Abate, K. Teegarden, “Dynamic pumping model for amplifier performance predictions,” Appl. Opt. 20, 1595–1605 (1981).
[CrossRef] [PubMed]

J. H. Kelly, D. L. Smith, J.-C. Lee, S. D. Jacobs, M. J. Shoup, D. J. Smith, “Improved active mirror geometry Cr:Nd:GSGG amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 380.

Kobayashi, S.

Krupke, W. F.

Kuhn, K.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser—Part 1. Theory,” IEEE J. Quantum Electron. QE-20, 289–301 (1984).
[CrossRef]

Kushner, M. J.

Lee, J.-C.

J. H. Kelly, D. L. Smith, J.-C. Lee, S. D. Jacobs, M. J. Shoup, D. J. Smith, “Improved active mirror geometry Cr:Nd:GSGG amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 380.

Lewis, O.

J. Rinefierd, S. D. Jacobs, D. Brown, J. Abate, O. Lewis, H. Applebaum, “Liquids for high repetition rate glass laser systems,” in Laser-Induced Damage in Optical Materials: 1978, Natl. Bur. Stand. (U.S.) Spec. Publ. 541 (U.S. GPO, Washington, D.C., 1979), pp. 109–121.

Lowdermilk, W. H.

Maier, M.

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.

Mangir, M. S.

M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flashlamp-pumped Nd:YAG and Nd-doped phosphate laser glasses,” IEEE J. Quantum Electron. QE-22, 574–580 (1986).
[CrossRef]

Marion, J. E.

Martin, S. W.

J. P. Chernoch, S. W. Martin, “Multiple internal reflection face-pumped laser,” U.S. patent3,633,126 (17April1969).

Milam, D.

Minot, M. J.

Neuman, W. A.

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Norton, M. A.

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Petr, R. A.

J. M. Eggleston, G. F. Albrecht, R. A. Petr, J. F. Zumdieck, “A high average power dual slab Nd-glass zigzag laser system,” IEEE J. Quantum Electron. 22, 2092–2098 (1986).
[CrossRef]

Reintjes, J. F.

J. F. Reintjes, “Stimulated Raman and Brillouin scattering,” in CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, Boca Raton, Fl., 1995), Sec. 8, p. 358, Table 8.3.7.

Riley, M. O.

W. F. Hagen, M. O. Riley, “Evanescent-wave control,” Lawrence Livermore National Laboratory Laser Program Annual Report 1985, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986), pp. 9-69–9-77.

Rinefierd, J.

J. Rinefierd, S. D. Jacobs, D. Brown, J. Abate, O. Lewis, H. Applebaum, “Liquids for high repetition rate glass laser systems,” in Laser-Induced Damage in Optical Materials: 1978, Natl. Bur. Stand. (U.S.) Spec. Publ. 541 (U.S. GPO, Washington, D.C., 1979), pp. 109–121.

Rockwell, D. A.

M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flashlamp-pumped Nd:YAG and Nd-doped phosphate laser glasses,” IEEE J. Quantum Electron. QE-22, 574–580 (1986).
[CrossRef]

Shinn, M. D.

Shoup, M. J.

K. A. Cerqua, M. J. Shoup, D. L. Smith, S. D. Jacobs, J. H. Kelly, “Strengthened phosphate glass in a high rep rate active-mirror amplifier geometry,” Appl. Opt. 27, 2567–2572 (1988).
[CrossRef] [PubMed]

J. H. Kelly, D. L. Smith, J.-C. Lee, S. D. Jacobs, M. J. Shoup, D. J. Smith, “Improved active mirror geometry Cr:Nd:GSGG amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 380.

Simmons, W. W.

W. W. Simmons, W. E. Warren, “Modelling and simulation of large solid state laser systems,” in Modeling and Simulation of Optoelectronic Systems, J. D. O’Keefe, ed., Proc. SPIE642, 166–172 (1986).Available as a (1986).
[CrossRef]

Smith, D. J.

J. H. Kelly, D. L. Smith, J.-C. Lee, S. D. Jacobs, M. J. Shoup, D. J. Smith, “Improved active mirror geometry Cr:Nd:GSGG amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 380.

Smith, D. L.

K. A. Cerqua, M. J. Shoup, D. L. Smith, S. D. Jacobs, J. H. Kelly, “Strengthened phosphate glass in a high rep rate active-mirror amplifier geometry,” Appl. Opt. 27, 2567–2572 (1988).
[CrossRef] [PubMed]

J. H. Kelly, D. L. Smith, J.-C. Lee, S. D. Jacobs, M. J. Shoup, D. J. Smith, “Improved active mirror geometry Cr:Nd:GSGG amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 380.

Stokowski, S. E.

Summers, M. A.

M. A. Summers, “We have developed a set of 3-D models which can be used to design zig-zag slab amplifiers,” presented at the Medium Average Power Solid-State Laser Technical Information Seminar, Lawrence Livermore National Laboratory, Livermore, Calif., 4 November 1988, pp. 6-1–6-31.

Swain, J. E.

Takeda, M.

Teegarden, K.

Trenholme, J. B.

This is conservative. Preferential deposition of energy near the slab faces that is due to Beer’s law absorption helps the thermal loading problem. See J. B. Trenholme, “Temperature and stress in a pumped glass slab,” Lawrence Livermore National Laboratory Laser Program Annual Report 1982, (Lawrence Livermore National Laboratory, Livermore, Calif., 1983), pp. 7-112–7-114.

Unternahrer, J.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser—Part 1. Theory,” IEEE J. Quantum Electron. QE-20, 289–301 (1984).
[CrossRef]

J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, “Slab-geometry Nd:glass laser performance studies,” Opt. Lett. 7, 405–407 (1982).
[CrossRef] [PubMed]

Warren, W. E.

W. W. Simmons, W. E. Warren, “Modelling and simulation of large solid state laser systems,” in Modeling and Simulation of Optoelectronic Systems, J. D. O’Keefe, ed., Proc. SPIE642, 166–172 (1986).Available as a (1986).
[CrossRef]

Zapata, L. E.

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Zumdieck, J. F.

J. M. Eggleston, G. F. Albrecht, R. A. Petr, J. F. Zumdieck, “A high average power dual slab Nd-glass zigzag laser system,” IEEE J. Quantum Electron. 22, 2092–2098 (1986).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser—Part 1. Theory,” IEEE J. Quantum Electron. QE-20, 289–301 (1984).
[CrossRef]

T. J. Kane, J. M. Eggleston, R. L. Byer, “The slab geometry laser—Part II. Thermal effects in a finite slab,” IEEE J. Quantum Electron. QE-21, 1195–1210 (1985).
[CrossRef]

J. M. Eggleston, G. F. Albrecht, R. A. Petr, J. F. Zumdieck, “A high average power dual slab Nd-glass zigzag laser system,” IEEE J. Quantum Electron. 22, 2092–2098 (1986).
[CrossRef]

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flashlamp-pumped Nd:YAG and Nd-doped phosphate laser glasses,” IEEE J. Quantum Electron. QE-22, 574–580 (1986).
[CrossRef]

R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Lett.

Other

“High-power laser interferometry,” Laboratory for Laser Energetics (LLE) Review 31, available as NTIS document DOE/DP/40200-47 (National Technical Information Service, Springfield, Va., 1987), pp. 114–123.

J. P. Chernoch, S. W. Martin, “Multiple internal reflection face-pumped laser,” U.S. patent3,633,126 (17April1969).

R. L. Byer, “Slab geometry lasers,” presented at the International Lasers and Electro-Optic Exhibition, Tokyo, Japan, 26 January 1985.

R. L. Byer, “Improved solid-state laser sources,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).

This is conservative. Preferential deposition of energy near the slab faces that is due to Beer’s law absorption helps the thermal loading problem. See J. B. Trenholme, “Temperature and stress in a pumped glass slab,” Lawrence Livermore National Laboratory Laser Program Annual Report 1982, (Lawrence Livermore National Laboratory, Livermore, Calif., 1983), pp. 7-112–7-114.

J. F. Reintjes, “Stimulated Raman and Brillouin scattering,” in CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, Boca Raton, Fl., 1995), Sec. 8, p. 358, Table 8.3.7.

These numbers were taken from Ref. 29 and corrected by the factor cos(π/4) to obtain the transverse gain.

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.

Product of General Electric Company, Silicon Products Division, Naperville, Ill. 60540.

G. J. DeSalvo, J. A. Swanson, “ANSYS engineering analysis system user’s manual,” Swanson Analysis Systems, Inc. (1June1985). (ansys is a registered trademark of Swanson Analysis Systems, Inc., Johnson Road, Houston, Pa. 15342.)

Product of United Detector Technologies, 12525 Chadron Avenue, Hawthorne, Calif. 90250.

Product of Amoco Laser Company, 1251 Frontenac Road, Naperville, Ill. 60540.

Product of Schott Technologies, Inc., 400 York Avenue, Duryea, Pa. 18462.

The largest body of research was described at the Lawrence Livermore National Laboratory Medium-Average Power Conferences. Compendia of that research appear in the Lawrence Livermore National Laboratory Laser Program Annual Reports (Lawrence Livermore National Laboratory, Livermore, Calif., 1985–1987).

Product of Hoya Optics, Inc., 3400 Edison Way, Fremont, Calif. 94538. Use of a particular product does indicate endorsement by the University of Rochester.

D. C. Brown, “Glass laser physics,” in High-Peak-Power Nd:Glass Laser Systems, Springer Series in Optical Sciences, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1981), Vol. 25, p. 45.

J. Rinefierd, S. D. Jacobs, D. Brown, J. Abate, O. Lewis, H. Applebaum, “Liquids for high repetition rate glass laser systems,” in Laser-Induced Damage in Optical Materials: 1978, Natl. Bur. Stand. (U.S.) Spec. Publ. 541 (U.S. GPO, Washington, D.C., 1979), pp. 109–121.

W. F. Hagen, M. O. Riley, “Evanescent-wave control,” Lawrence Livermore National Laboratory Laser Program Annual Report 1985, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986), pp. 9-69–9-77.

M. A. Summers, “We have developed a set of 3-D models which can be used to design zig-zag slab amplifiers,” presented at the Medium Average Power Solid-State Laser Technical Information Seminar, Lawrence Livermore National Laboratory, Livermore, Calif., 4 November 1988, pp. 6-1–6-31.

Hoya Optics, Inc., product literature, 3400 Edison Way, Fremont, Calif. 94538.

The code used here is an upgraded version of the zap Laser Analysis Program written by J. H. Alexander, M. Froost, J. E. Welch, Advanced Research Projects Agency Order 660, Contract N00014-70-C-0341 (Systems, Science and Software, La Jolla, Calif., June1971).

A. C. Erlandson, “Pulse length scaling,” Lawrence Livermore National Laboratory Laser Program Annual Report 1985, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986), pp. 7-18–7-25.

Technical Bulletin 2, ILC Technology, 399 Java Drive, Sunnyvale, Calif. 94089.

Product of Corning Glass Works, Corning, N.Y. 14831.

J. H. Kelly, D. L. Smith, J.-C. Lee, S. D. Jacobs, M. J. Shoup, D. J. Smith, “Improved active mirror geometry Cr:Nd:GSGG amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 380.

W. M. Kays, M. E. Crawford, Convective Heat and Mass Transfer, 2nd ed. (McGraw-Hill, New York, 1980), p. 245.

F. P. Incropera, D. P. Dewitt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 1985), p. 429.

W. W. Simmons, W. E. Warren, “Modelling and simulation of large solid state laser systems,” in Modeling and Simulation of Optoelectronic Systems, J. D. O’Keefe, ed., Proc. SPIE642, 166–172 (1986).Available as a (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Orthogonal cross-sectional views of a face-pumped slab showing key features.

Fig. 2
Fig. 2

Entering or exiting ray for a Brewster’s angle slab with Brewster face cooling.

Fig. 3
Fig. 3

Longitudinal cross-sectional view showing the thermal distribution in the transition region.

Fig. 4
Fig. 4

Orthogonal cross sections of the slab amplifier detailing all components.

Fig. 5
Fig. 5

Steady-state isotherm plot of a uniformly loaded slab with square edges. The edges are treated as an adiabatic boundary.

Fig. 6
Fig. 6

Steady-state isotherm plot of a uniformly loaded slab with beveled edges. The edges are treated as an adiabatic boundary.

Fig. 7
Fig. 7

Steady-state isotherm plot of a uniformly loaded slab with beveled edges. The silicon bonding layer and stainless-steel frame have been added as detailed in Fig. 2.

Fig. 8
Fig. 8

Steady-state isotherm plot of a slab loaded with a predicted pump profile. The silicon bonding layer and stainless-steel frame have been added as detailed in Fig. 2.

Fig. 9
Fig. 9

Experimental setup used for small-signal-gain and gain-mapping experiments.

Fig. 10
Fig. 10

Plot of gross gain as a function of bank energy for both specular and diffuse reflectors.

Fig. 11
Fig. 11

Storage efficiency as a function of stored energy in the slab.

Fig. 12
Fig. 12

Normalized stored-energy map for specular reflectors at three discrete bank energies. Also shown is the predicted pump profile with 3σ error bars.

Fig. 13
Fig. 13

Normalized stored-energy map for two different diffuse reflectors at the design bank energy. Also shown is the predicted pump profile with 3σ error bars.

Fig. 14
Fig. 14

Experimental setup used for birefringence mapping.

Fig. 15
Fig. 15

Steady-state birefringence map.

Fig. 16
Fig. 16

Mach–Zehnder interferometer setup for wave-front evaluation. CID, charge injection device; HR, high reflectivity.

Fig. 17
Fig. 17

Pressure-induced wave-front error within the clear aperture.

Fig. 18
Fig. 18

Thermally induced wave-front error within the clear aperture.

Fig. 19
Fig. 19

Damage test laser schematic.

Tables (2)

Tables Icon

Table 1 Friction Factor for Various Reynolds Numbers

Tables Icon

Table 2 System Performance

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

damage fluenceJ/cm2=12τ0.5,
CA=4J×6×1.812J/cm23.6 cm2.
σs=Q12Ms t2,
Ms=1-νkαE,
t2=σfMs2.4Q.
Q=Esχf,
t=Rs2.4Esχf1/2.
L=ln8cosθα0Es=20.0 cm,
ϕ=-cn/n,
L=E017000fxdT/31/2=80.25 cm,
Pa=fVpEsχ.
Q=m˙cpTo-Ti,
Re=ρDuμ,
D=4AcP,
u=4VPD.
Re=4m˙μP.
h=kNuD,
Nu=RePrcf/21.07+12.7Pr2/3-1cf/21/2,
cf2=2.236 lnRe-4.639-2,
Pr=cpμk,
10xfd,hD60.
Δp=fLD12 ρu2,
Δp=f4LρV2lp+tlpt3,
ΔT=Qmcp,
Δd=dndTΔTd,
gIpL=27.
d=0.1422PLlEt3Ll3+2.21L2,

Metrics