Abstract

Spatial light modulators (SLM’s) consisting of a polymer-dispersed liquid crystal (PDLC) film and a Bi12SiO20 photoconductor are discussed and demonstrated. This device, which uses light scattering in the PDLC film, has several advantages including no polarizer, a low optical loss, and video-rate operation. The device was designed by use of an electrical-image method. High-definition SLM’s with a limiting resolution (36–50 line pairs/mm) were fabricated by stacking of an optimized mirror and the PDLC film. The device, which was incorporated into a Schlieren system with a 1-kW xenon lamp, provided high-contrast video images and a total luminous flux of 1000 lm.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
    [CrossRef]
  2. M. Kobayashi, T. Nakazono, K. Mori, H. Nakamura, H. Sato, M. Nakagawa, N. Harada, “High-mobility poly-Si TFTs with a tungsten-polycide gate for 1.9-M pixel HDTV LCD projector,” Society for Information Display International Symposium Dig. San Jose, Calif. 25, 75–78 (1994).
  3. V. J. Fritz, “Full-color, liquid crystal light valve projector for shipboard use,” in Large Screen and Projection Displays II, W. P. Bleha, ed., Proc. SPIE1255, 59–68 (1990).
  4. R. D. Sterling, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” Society for Information Display International Symposium Dig. Las Vegas, Nev. 21, 327–329 (1990).
  5. M. D. Cowan, J. Baker, T. Schmidt, W. E. Hass, “A 1000-lumen real-time video light-valve projector,” Society for Information Display International Symposium Dig. Boston, Mass. 23, 443–446 (1992).
  6. W. P. Bleha, “High resolution projection liquid crystal displays,” in Proceedings of the Eurodisplay ’90 Conference, Amsterdam, The Netherlands, pp. 44–47.
  7. K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
    [CrossRef]
  8. K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
    [CrossRef]
  9. K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168(1994).
    [CrossRef]
  10. K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
    [CrossRef]
  11. K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-disprsed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).
  12. J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
    [CrossRef]
  13. B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
    [CrossRef]
  14. A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
    [CrossRef]
  15. P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559(1988).
    [CrossRef]
  16. G. P. Montgomery, “Polymer-dispresed and encapsulated liquid crystal films,” Vol. ISO4SPIE Institute Series (SPIE Press, Bellingham, Wash.1990), pp. 577–606.
  17. R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
    [CrossRef]
  18. K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).
  19. S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20” J. Appl. Phys. 44, 2652–2658 (1973).
    [CrossRef]
  20. M. Kitagawa, T. Hirao, “Low-temperature preparation of doped hydrogenated amorphous silicon films by ac-based microwave ECR plasma CVD method,” Jpn. J. Appl. Phys. 29, L1753–L1759 (1990).
    [CrossRef]

1994 (3)

M. Kobayashi, T. Nakazono, K. Mori, H. Nakamura, H. Sato, M. Nakagawa, N. Harada, “High-mobility poly-Si TFTs with a tungsten-polycide gate for 1.9-M pixel HDTV LCD projector,” Society for Information Display International Symposium Dig. San Jose, Calif. 25, 75–78 (1994).

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168(1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

1993 (1)

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

1992 (1)

M. D. Cowan, J. Baker, T. Schmidt, W. E. Hass, “A 1000-lumen real-time video light-valve projector,” Society for Information Display International Symposium Dig. Boston, Mass. 23, 443–446 (1992).

1990 (2)

R. D. Sterling, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” Society for Information Display International Symposium Dig. Las Vegas, Nev. 21, 327–329 (1990).

M. Kitagawa, T. Hirao, “Low-temperature preparation of doped hydrogenated amorphous silicon films by ac-based microwave ECR plasma CVD method,” Jpn. J. Appl. Phys. 29, L1753–L1759 (1990).
[CrossRef]

1989 (1)

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

1988 (2)

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559(1988).
[CrossRef]

1987 (1)

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

1986 (1)

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

1981 (1)

K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).

1973 (1)

S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

1971 (1)

R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
[CrossRef]

Aldrich, R. E.

S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
[CrossRef]

Baker, J.

M. D. Cowan, J. Baker, T. Schmidt, W. E. Hass, “A 1000-lumen real-time video light-valve projector,” Society for Information Display International Symposium Dig. Boston, Mass. 23, 443–446 (1992).

Bleha, W. P.

R. D. Sterling, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” Society for Information Display International Symposium Dig. Las Vegas, Nev. 21, 327–329 (1990).

W. P. Bleha, “High resolution projection liquid crystal displays,” in Proceedings of the Eurodisplay ’90 Conference, Amsterdam, The Netherlands, pp. 44–47.

Borah, T. C.

R. D. Sterling, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” Society for Information Display International Symposium Dig. Las Vegas, Nev. 21, 327–329 (1990).

Cowan, M. D.

M. D. Cowan, J. Baker, T. Schmidt, W. E. Hass, “A 1000-lumen real-time video light-valve projector,” Society for Information Display International Symposium Dig. Boston, Mass. 23, 443–446 (1992).

Doane, J. W.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Drazaic, P. S.

P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559(1988).
[CrossRef]

Fritz, V. J.

V. J. Fritz, “Full-color, liquid crystal light valve projector for shipboard use,” in Large Screen and Projection Displays II, W. P. Bleha, ed., Proc. SPIE1255, 59–68 (1990).

Fujii, T.

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-disprsed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).

Fujikake, H.

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168(1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-disprsed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

Golemme, A.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

Haggerty, J. M.

R. D. Sterling, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” Society for Information Display International Symposium Dig. Las Vegas, Nev. 21, 327–329 (1990).

Hamasaki, Y.

K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).

Harada, N.

M. Kobayashi, T. Nakazono, K. Mori, H. Nakamura, H. Sato, M. Nakagawa, N. Harada, “High-mobility poly-Si TFTs with a tungsten-polycide gate for 1.9-M pixel HDTV LCD projector,” Society for Information Display International Symposium Dig. San Jose, Calif. 25, 75–78 (1994).

Harvill, M. L.

R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
[CrossRef]

Hass, W. E.

M. D. Cowan, J. Baker, T. Schmidt, W. E. Hass, “A 1000-lumen real-time video light-valve projector,” Society for Information Display International Symposium Dig. Boston, Mass. 23, 443–446 (1992).

Hirao, T.

M. Kitagawa, T. Hirao, “Low-temperature preparation of doped hydrogenated amorphous silicon films by ac-based microwave ECR plasma CVD method,” Jpn. J. Appl. Phys. 29, L1753–L1759 (1990).
[CrossRef]

Hou, S. L.

S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
[CrossRef]

Iguchi, S.

K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).

Kawakita, M.

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-disprsed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).

Kikuchi, H.

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168(1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-disprsed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

Kishi, K.

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168(1994).
[CrossRef]

Kitagawa, M.

M. Kitagawa, T. Hirao, “Low-temperature preparation of doped hydrogenated amorphous silicon films by ac-based microwave ECR plasma CVD method,” Jpn. J. Appl. Phys. 29, L1753–L1759 (1990).
[CrossRef]

Kobayashi, M.

M. Kobayashi, T. Nakazono, K. Mori, H. Nakamura, H. Sato, M. Nakagawa, N. Harada, “High-mobility poly-Si TFTs with a tungsten-polycide gate for 1.9-M pixel HDTV LCD projector,” Society for Information Display International Symposium Dig. San Jose, Calif. 25, 75–78 (1994).

Kodama, K.

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168(1994).
[CrossRef]

Kolste, R. D. T.

R. D. Sterling, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” Society for Information Display International Symposium Dig. Las Vegas, Nev. 21, 327–329 (1990).

Kuhara, Y.

K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).

Lauer, R. B.

S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

Montgomery, G. P.

G. P. Montgomery, “Polymer-dispresed and encapsulated liquid crystal films,” Vol. ISO4SPIE Institute Series (SPIE Press, Bellingham, Wash.1990), pp. 577–606.

Mori, K.

M. Kobayashi, T. Nakazono, K. Mori, H. Nakamura, H. Sato, M. Nakagawa, N. Harada, “High-mobility poly-Si TFTs with a tungsten-polycide gate for 1.9-M pixel HDTV LCD projector,” Society for Information Display International Symposium Dig. San Jose, Calif. 25, 75–78 (1994).

Murata, A.

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-disprsed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).

Nakagawa, M.

M. Kobayashi, T. Nakazono, K. Mori, H. Nakamura, H. Sato, M. Nakagawa, N. Harada, “High-mobility poly-Si TFTs with a tungsten-polycide gate for 1.9-M pixel HDTV LCD projector,” Society for Information Display International Symposium Dig. San Jose, Calif. 25, 75–78 (1994).

Nakamura, H.

M. Kobayashi, T. Nakazono, K. Mori, H. Nakamura, H. Sato, M. Nakagawa, N. Harada, “High-mobility poly-Si TFTs with a tungsten-polycide gate for 1.9-M pixel HDTV LCD projector,” Society for Information Display International Symposium Dig. San Jose, Calif. 25, 75–78 (1994).

Nakazono, T.

M. Kobayashi, T. Nakazono, K. Mori, H. Nakamura, H. Sato, M. Nakagawa, N. Harada, “High-mobility poly-Si TFTs with a tungsten-polycide gate for 1.9-M pixel HDTV LCD projector,” Society for Information Display International Symposium Dig. San Jose, Calif. 25, 75–78 (1994).

Namikawa, Y.

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

Nanba, H.

K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).

Neubert, M. E.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

Nishiwaki, Y.

K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).

Okada, M.

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

Sato, H.

M. Kobayashi, T. Nakazono, K. Mori, H. Nakamura, H. Sato, M. Nakagawa, N. Harada, “High-mobility poly-Si TFTs with a tungsten-polycide gate for 1.9-M pixel HDTV LCD projector,” Society for Information Display International Symposium Dig. San Jose, Calif. 25, 75–78 (1994).

Schmidt, T.

M. D. Cowan, J. Baker, T. Schmidt, W. E. Hass, “A 1000-lumen real-time video light-valve projector,” Society for Information Display International Symposium Dig. Boston, Mass. 23, 443–446 (1992).

Sterling, R. D.

R. D. Sterling, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” Society for Information Display International Symposium Dig. Las Vegas, Nev. 21, 327–329 (1990).

Tada, K.

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

Takizawa, K.

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168(1994).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-disprsed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

Tatsumi, M.

K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).

Tsuno, K.

K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).

Vaz, N. A.

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

West, J. L.

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

Wu, B.-G.

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Yokozawa, M.

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-disprsed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).

Zumer, S.

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

Appl. Phys. Lett. (2)

K. Takizawa, H. Kikuchi, H. Fujikake, M. Okada, “Transmission mode spatial light modulator using a Bi12SiO20 crystal and polymer-dispersed liquid crystal layers,” Appl. Phys. Lett. 56, 999–1001 (1989).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[CrossRef]

J. Appl. Phys. (4)

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
[CrossRef]

S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, K. Kodama, K. Kishi, “Spatial light modulator using polymer-dispersed liquid crystal: dependence of resolution on reading light intensity,” J. Appl. Phys. 75, 3158–3168(1994).
[CrossRef]

J. Chem. Soc. Jpn. (1)

K. Tada, H. Nanba, Y. Kuhara, M. Tatsumi, S. Iguchi, Y. Hamasaki, Y. Nishiwaki, K. Tsuno, “Crystal growth and optical properties of large single-crystals of bismuth silicon oxide,” J. Chem. Soc. Jpn. 10, 1630–1639 (1981).

Jpn. J. Appl. Phys. (2)

M. Kitagawa, T. Hirao, “Low-temperature preparation of doped hydrogenated amorphous silicon films by ac-based microwave ECR plasma CVD method,” Jpn. J. Appl. Phys. 29, L1753–L1759 (1990).
[CrossRef]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Reflection mode polymer-dispersed liquid crystal light valve,” Jpn. J. Appl. Phys. 33, 1346–1351 (1994).
[CrossRef]

Liq. Cryst. (1)

P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559(1988).
[CrossRef]

Opt. Eng. (1)

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

Phys. Rev. (1)

A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988).
[CrossRef]

Society for Information Display International Symposium Dig. Boston, Mass. (1)

M. D. Cowan, J. Baker, T. Schmidt, W. E. Hass, “A 1000-lumen real-time video light-valve projector,” Society for Information Display International Symposium Dig. Boston, Mass. 23, 443–446 (1992).

Society for Information Display International Symposium Dig. Las Vegas, Nev. (1)

R. D. Sterling, R. D. T. Kolste, J. M. Haggerty, T. C. Borah, W. P. Bleha, “Video-rate liquid-crystal light-valve using an amorphous silicon photoconductor,” Society for Information Display International Symposium Dig. Las Vegas, Nev. 21, 327–329 (1990).

Society for Information Display International Symposium Dig. San Jose, Calif. (1)

M. Kobayashi, T. Nakazono, K. Mori, H. Nakamura, H. Sato, M. Nakagawa, N. Harada, “High-mobility poly-Si TFTs with a tungsten-polycide gate for 1.9-M pixel HDTV LCD projector,” Society for Information Display International Symposium Dig. San Jose, Calif. 25, 75–78 (1994).

Other (5)

V. J. Fritz, “Full-color, liquid crystal light valve projector for shipboard use,” in Large Screen and Projection Displays II, W. P. Bleha, ed., Proc. SPIE1255, 59–68 (1990).

W. P. Bleha, “High resolution projection liquid crystal displays,” in Proceedings of the Eurodisplay ’90 Conference, Amsterdam, The Netherlands, pp. 44–47.

K. Takizawa, H. Kikuchi, H. Fujikake, T. Fujii, M. Kawakita, M. Yokozawa, A. Murata, “Spatial light modulators using polymer-disprsed liquid crystal and Bi12SiO20 photoconductive layers for projection display,” in Projection Displays, M. H. Wu, ed., Proc. SPIE2407, 136–148 (1995).

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display application,” in Display Technologies, S. Chen, S. T. Wu, eds., Proc. SPIE1815, 223–232 (1992).
[CrossRef]

G. P. Montgomery, “Polymer-dispresed and encapsulated liquid crystal films,” Vol. ISO4SPIE Institute Series (SPIE Press, Bellingham, Wash.1990), pp. 577–606.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic diagram of the PDLCLV (a) with no writing-light irradiation, and (b) with sufficient writing-light irradiation.

Fig. 2
Fig. 2

Dependence of the transmittance of the 10-μm-thick PDLC cell on the applied voltage. V10 and V100 are the applied voltages corresponding to 9% and 90%, respectively, of the maximum transmittance.

Fig. 3
Fig. 3

Dependence of the conductance G and the capacitance C of the BSO crystal on the incident-light intensity at a wavelength of 488 nm. The filled and open circles represent the experimental results, and the solid curves represent the calculated results obtained with the least-squares method.

Fig. 4
Fig. 4

Simplest model for the PDLCLV: (a) The electric charge is placed at point P near the boundary plane. (b) The electric field in medium B can be calculated if medium L is exchanged for medium B and the original charge Q and virtual charge Q′, placed at point P′(which is symmetrical with respect to point P, are used. (c) The electric field in medium L can be calculated if medium B is exchanged for medium L and the virtual charge Q″, placed at point P″, (which is in the same relative position as point P), are used. Lines of the electric fields in the media are also illustrated for (d) medium B, (e) medium L, and (f) both media.

Fig. 5
Fig. 5

Model of the mirrorless PDLCLV used in the analysis.

Fig. 6
Fig. 6

Schematic diagrams of the mirrorless PDLCLV for calculation of the electric field in (a) the BSO-crystal component and (b) the PDLC component. Q represents the original charge generated by the writing light, and QB(2), QB(3), …, represent the virtual charges. Charge Q and virtual charges QB(2), QB(3), …, are used for calculating the electric field in the BSO component. Virtual charges QL(2), QL(3), …, are used for calculating the electric field in the PDLC component. PB(1), PB(2), …, and PL(1), PL(2),…, are the positions of the original and virtual charges, respectively. Two charges related by two arcs are symmetric with respect to the boundary plane.

Fig. 7
Fig. 7

Diagrams of the equivalent circuits of the dielectric multilayer film mirror: (a) Multilayer films with the resistance R1 and capacitance C1 of the high-refractive-index layer and the resistance R2 and capacitance C2 of the low-refractive-index layer. (b) The multilayer structure expressed in two layers, where N1 and N2 represent numbers of the high- and low-refractive-index layers, respectively. (c) The multilayer structure expressed as a single-layer film, where RM is the effective resistance and CM is the effective capacitance of the mirror.

Fig. 8
Fig. 8

Schematic diagrams of the reflection-type PDLCLV for calculation of the electric field in (a) the BSO crystal, (b) the mirror, and (c) the PDLC. Original charge QB(1, 0, 0) and virtual charges QB(2, 0, 0), QB(3, 0, 0), …, are used to calculate the electric field in the BSO. Virtual charges QM(j, 0, 0) and QL(j, 0, 0) (j ≥ 1) are used to calculate the electric fields in the mirror and the PDLC, respectively.

Fig. 9
Fig. 9

Schematic diagrams of the reflection-type PDLCLV for calculating the electric fields in (a) the BSO, (b) the mirror, and (c) the PDLC. Virtual charges QM(1, 1, 0), QM(2, 1, 0), …, are used to calculate the electric field in the mirror section. Virtual charges QL(1, 1, 0), QL(1, 2, 0), …, are used to calculate the electric field in the PDLC section.

Fig. 10
Fig. 10

Schematic diagrams of the reflection-type PDLCLV for calculating the electric fields in (a) the BSO, (b) the mirror, and (c) the PDLC. Virtual charges QB(1, 1, 0), QB(2, 1, 0), …, are used to calculate the electric field in the BSO section; QM(1, 1, 0), QM (2, 1, 0), …, QM(1, 1, 1), QM(2, 1, 1), …, are used to calculate the electric field in the mirror section; and QL(1, 1, 1), QL(2, 1, 1), …, are used to calculate the electric field in the PDLC section.

Fig. 11
Fig. 11

Calculated results showing the lines of electric force in the model, where it is assumed that N1 = 9, N2 = 8, λ = 550nm, the frequency of the applied voltage is f = 1 kHz, and the electric charge Q is placed at point PB(1, 0, 0), which is 2 μm away from boundary surface A. As the relative potentials at points C0, C1, C2, C3, …, are derived from calculated results, the absolute potential at each point can be found if the potential at point C0 is known.

Fig. 12
Fig. 12

Diagram of the equivalent circuit of the PDLCLV without a light-absorbing layer. The terms YB, YM, and YL are the admittances per unit area of the BSO crystal, the dielectric multilayer film mirror, and the PDLC layer, respectively.

Fig. 13
Fig. 13

Theoretical model of the voltage-dependency characteristics of transmission of a PDLC cell.

Fig. 14
Fig. 14

Dependence of the limiting resolution fR of the theoretical model of a reflection-type PDLCLV on the writing-light intensity at a wavelength of λ = 488 nm for several values of the parameter S.

Fig. 15
Fig. 15

Dependence of the limiting resolution fR of the reflection-type PDLCLV on the conductivity σM of the dielectric multilayer film mirror. The solid curves and filled circles correspond to the calculated and experimental results, respectively.

Fig. 16
Fig. 16

Experimental relation between the normalized intensity of the reading-light and writing-light intensities for a R-PDLCLV and a G-PDLCLV. V0 is the driving voltage.

Fig. 17
Fig. 17

Schematic diagram of a monochromatic projection display system consisting of a G-PDLCLV and an active-matrix-type LC panel (LCTV) as the input-image source.

Fig. 18
Fig. 18

Experimental dependence of the luminous flux of the G-PDLCLV on the writing-light intensity.

Tables (3)

Tables Icon

Table 1 Materials that Form a PDLCLV and Their Thicknesses

Tables Icon

Table 2 Typical Properties of the Nematic LC BL-008 and the Ultraviolet-Cured Resin NOA-65

Tables Icon

Table 3 Basic Characteristics of BSO Crystal

Equations (52)

Equations on this page are rendered with MathJax. Learn more.

no  np,
no  ne.
S=V100- V10/V10,
G=G0 + 1.10p0.738,
logC/C0=1.82 × 10-5log P5.55,
VB=VL,
.BdVB/dx=.LdVL/dx,
.B=B +σB/jω,
.L=L +σL/jω,
VB=Q/x- d2 + y2 + z20.5+ Q/x+ d2 + y2 +z20.5/4π.B.
VL=Q/4π.Lx - d2+ y2 + z20.5.
Q/d2+ y2 + z20.5 +Q/d2 + y2+ z20.5/4π.B=Q/4π.Ld2+ y2 + z20.5,
Q + Q/.B=Q/.L.
.BQ -Q/4π.Bd2+ y2 + z21.5=.LQ/4π.Ld2+ y2 + z21.5,
Q - Q=Q.
Q=Q.B -.L/.B+ .L,
Q=2Q.L/.B+ .L.
QL2=-QL1=-2Q.L/.B+ .L.
QB3=-4Q.B.L/.B+ .L2,
QL3=2Q.L.B- .L/.B+ .L2.
R1=λ/4σ1n1,R2=λ/4σ2n2,C1=41n1/λ,C2=42n2/λ,
RM=dM/σM,CM=M/dM,
dM=λN1/n1+ N2/n2/4.
σM=N1n2+ N2n1/1+ ωα2A+ B,
M=ασM,
α=1A/σ1+ 2B/σ2/A+ B,A=N1n2/σ1/1+ ω1/σ12,B=N2n1/σ21+ ω2/σ22.
.M=M +σM/jω.
QB2, 0, 0=Q.B -.M/.B+ .M,
QM1, 0, 0=2Q.M/.B+ .M,
QM2, 0, 0=QM1, 0, 0.M- .L/.M+ .L=2Q.M.M- .L/.M+ .L.B+ .M,
QL1, 0, 0=2QM1, 0, 0.L/.M+ .L=4Q.L.M/.M+ .L.B+ .M.
QM3, 0, 0=QM2, 0, 0.M- .B/.B+ .M,
QB3, 0, 0=2QM2, 0, 0.B/.B+ .M=4Q.B.M.M- .L/.M+ .L.B+ .M2.
QBj, 0, 0=QB3, 0, 0.M- .B.M- .L/.B+ .M × .M+ .Lj-3         j  4.
PB1, 0, 0=- d,PB2, 0, 0=d,PB3, 0, 0=PM2, 0, 0,PBj, 0, 0=PM2j - 4, 0, 0         j  4.
QM2j, 0, 0=QM2j - 1, 0, 0.M- .L/.M+ .L=QM1, 0, 0.M- .L/.M+ .Lj× .M- .B/.B+ .Mj-1,QM2j + 1, 0, 0=QM2j, 0, 0.M- .B/.B+ .M=QM1, 0, 0.M- .L/.M+ .Lj× .M- .B/.B+ .Mj         j  1.
PM1, 0, 0=-d,PM2j, 0, 0=2dM - PM2j - 1, 0, 0,PM2j + 1, 0, 0=-PM2j, 0, 0         j  1.
QLj, 0, 0=2QM2j - 1, 0,0.L/.M+ .L         j  1,
PLj, 0, 0=PM2j - 1, 0, 0=-2j - 1dM - d         j  1.
QLj, 1, 0=-QLj, 0, 0         j  1,
PLj, 1, 0=2dM + 2dL -PLj,0, 0         j  1,
QLj, 2, 0=QLj, 1,0.L- .M/.L+ .M         j  1,
PLj, 2, 0=2dM - PLj, 1, 0         j 1.
QMj, 1, 0=2QLj, 1,0.M/.L+ .M         j  1,
PMj, 1, 0=PLj, 1, 0         j  1.
QMj, 1, 1=QMj, 1, 0.M- .B/.M+ .B         j  1,
QBj, 1, 0=2QMj, 1,0.B/.B+ .M         j  1,
PMj, 1, 1=- PMj, 1, 0         j  1,
PBj, 1, 0=PMj, 1, 0         j  1.
VL/V0=YBYM/YBYM+ YMYL + YLYB,
YB=-1/RB + jωCB,YM=-1/RM + jωCM,YL=-1/RL + jωCL,
RB=dB/σB,RL=dL/σL,CB=B/dB,CL=L/dL,

Metrics