Abstract

The description of optical properties of light-scattering materials has made extensive use of radiative transfer models. One of the most successful and simplest models is that of Kubelka and Munk (KM). With this model, optical properties of particulate films under diffuse illumination can be predicted from effective absorption and scattering coefficients of the material. We consider the applicability conditions of this kind of model. An extended KM model for the case of perpendicular collimated illumination is compared with results from a more general four-flux approach, and the differences between them are characterized in terms of a correction factor that depends on particle scattering and absorption, concentration of the scatterers, and film thickness. It is proved formally that the extended KM model under perpendicular illumination is a good approximation for the cases of optically thick films that contain weakly or nonabsorbing particles.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription