Abstract

A technique is described for the determination of soot volume fractions by laser light extinction measurements. This technique differs from previously reported pointwise methods in that a two-dimensional array (i.e., image) of data is acquired simultaneously. In this fashion the net data rate is increased and allows the study of time-dependent phenomena and the investigation of spatial and temporal correlations. A telecentric imaging configuration is employed to provide depth invariant magnification and to permit the specification of the collection angle for scattered light. A method is also employed to suppress undesirable coherent imaging effects. A discussion of the tomographic inversion process is also provided, including the results obtained from numerical simulations.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Hayes, H. G. Wagner, “Soot formation,” Prog. Energy Combust. Sci. 7, 229–273 (1981).
    [CrossRef]
  2. C. L. Tien, S. C. Lee, “Flame radiation,” Prog. Energy Combust. Sci. 8, 41–59 (1982).
    [CrossRef]
  3. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurement in diffusion flames,” Combust. Flame 51, 203–218 (1983).
    [CrossRef]
  4. J. P. Gore, G. M. Faeth, “Structure and radiation properties of turbulent ethylene/air diffusion flames,” in Proceedings of the Twenty-First Symposiums (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1521–1531.
  5. M. V. Berry, I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986).
    [CrossRef]
  6. R. D. Mountain, G. W. Mulholland, “Light scattering from simulated smoke aggregates,” Langmuir 4, 1321–1326 (1988).
    [CrossRef]
  7. R. Siegell, J. R. Howell, Thermal Radiation and Heat Transfer, 2nd ed. (McGraw-Hill, New York, 1981), pp. 450–595.
  8. W. H. Dalzell, A. F. Serofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
    [CrossRef]
  9. S. Chippett, W. H. Gray, “The size and optical properties of soot particles,” Combust. Flame 31, 149–159 (1978).
    [CrossRef]
  10. B. M. Vaglieco, F. Baretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
    [CrossRef]
  11. R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
    [CrossRef]
  12. R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
    [CrossRef]
  13. Ü. Ö. Köylü, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992).
    [CrossRef]
  14. J. C. Ku, K. H. Shin, “Optical diagnostics and radiative properties of simulated soot aggregates,” J. Heat Transfer 115, 953–958 (1991).
    [CrossRef]
  15. D. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991).
    [CrossRef] [PubMed]
  16. Ü. Ö. Köylü, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993).
    [CrossRef]
  17. R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of the fractal soot optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
    [CrossRef]
  18. N. H. Abel, “Auflosung einer mechanischen aufgabe,” J. Reiner Angew. Math. 1, 153–157 (1826).
    [CrossRef]
  19. C. J. Dasch, “One-dimensional tomography: a comparison of abel, onion-peeling, and filtered back projection methods,” Appl. Opt. 31, 1146–1152 (1992).
    [CrossRef] [PubMed]
  20. G. N. Ramachandran, A. V. Lakshminarayanan, “Three dimensional reconstruction from radiographs and electron micrographs: applications of convolutions instead of Fourier transforms,” Proc. Natl. Acad. Sci. U.S.A. 68, 2236–2240 (1971).
    [CrossRef]
  21. L. A. Shepp, B. F. Logan, “Reconstructing interior head tissue from x-ray transmissions,” IEEE Trans. Nucl. Sci. NS-21, 228–236 (1974).
    [CrossRef]
  22. R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical tomography for flowfield diagnostics,” Int. J. Heat Mass Transfer (7), 24, 1139–1150 (1981).
    [CrossRef]
  23. B. J. Hughey, D. A. Santavicca, “A comparison of techniques for reconstructing axisymmetric reacting flow fields from absorption measurements,” Combust. Sci. Technol. 29, 167–190 (1982).
    [CrossRef]
  24. R. J. Hall, P. A. Bonczyk, “Sooting flame thermometry using emission/absorption tomography,” Appl. Opt. 29, 4590–4598 (1990).
    [CrossRef] [PubMed]
  25. R. Dändliker, “Heterodyne holographic interferometry,” in Progress in Optics XVII, E. Wolf, ed., (North-Holland, Amsterdam, 1980), pp. 9–11.
  26. H. Akima, “A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points,” ACM Trans. Math. Software 4, 148–159 (1978).
    [CrossRef]
  27. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990), Chap. 6, pp. 133–158.
  28. P. A. Bonczyk, R. J. Hall, “Fractal properties of soot agglomerates,” Langmuir 7, 1274–1280 (1991).
    [CrossRef]
  29. W. L. Howes, D. R. Buchele, “Optical interferometry of inhomogeneous gases,” J. Opt. Soc. Am. 56, 1517–1528 (1966).
    [CrossRef]
  30. G. M. Faeth, Science requirements document for the Laminar Soot Processes Experiment (LSP), submitted to the National Aeronautics and Space Administration, Code UG (Apr.1996), pp. D.1–D.12.
  31. M. Y. Choi, K. O. Lee, “Investigation of sooting in microgravity droplet combustion,” in Proceedings of the Twenty-sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1997), Vol. 26, pp. 1243–1250.
    [CrossRef]
  32. J. C. Ku, L. Tong, P. S. Greenberg, “Measurements and modeling of soot formation in microgravity jet diffusion flames,” in Proceedings of the ASME Heat Transfer Division, (American Society of Mechanical Engineers, New York, 1996), Vol. 4, pp. 261–270.
  33. P. S. Greenberg, J. C. Ku, “Soot volume fractions in normal and reduced gravity laminar acetylene diffusion flames,” Combust. Flame 108, 227–230 (1997).
    [CrossRef]

1997 (1)

P. S. Greenberg, J. C. Ku, “Soot volume fractions in normal and reduced gravity laminar acetylene diffusion flames,” Combust. Flame 108, 227–230 (1997).
[CrossRef]

1994 (1)

R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of the fractal soot optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

1993 (2)

Ü. Ö. Köylü, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993).
[CrossRef]

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

1992 (2)

Ü. Ö. Köylü, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992).
[CrossRef]

C. J. Dasch, “One-dimensional tomography: a comparison of abel, onion-peeling, and filtered back projection methods,” Appl. Opt. 31, 1146–1152 (1992).
[CrossRef] [PubMed]

1991 (3)

P. A. Bonczyk, R. J. Hall, “Fractal properties of soot agglomerates,” Langmuir 7, 1274–1280 (1991).
[CrossRef]

J. C. Ku, K. H. Shin, “Optical diagnostics and radiative properties of simulated soot aggregates,” J. Heat Transfer 115, 953–958 (1991).
[CrossRef]

D. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991).
[CrossRef] [PubMed]

1990 (2)

B. M. Vaglieco, F. Baretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

R. J. Hall, P. A. Bonczyk, “Sooting flame thermometry using emission/absorption tomography,” Appl. Opt. 29, 4590–4598 (1990).
[CrossRef] [PubMed]

1988 (1)

R. D. Mountain, G. W. Mulholland, “Light scattering from simulated smoke aggregates,” Langmuir 4, 1321–1326 (1988).
[CrossRef]

1987 (1)

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

1986 (1)

M. V. Berry, I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986).
[CrossRef]

1983 (1)

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurement in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

1982 (2)

C. L. Tien, S. C. Lee, “Flame radiation,” Prog. Energy Combust. Sci. 8, 41–59 (1982).
[CrossRef]

B. J. Hughey, D. A. Santavicca, “A comparison of techniques for reconstructing axisymmetric reacting flow fields from absorption measurements,” Combust. Sci. Technol. 29, 167–190 (1982).
[CrossRef]

1981 (2)

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical tomography for flowfield diagnostics,” Int. J. Heat Mass Transfer (7), 24, 1139–1150 (1981).
[CrossRef]

B. S. Hayes, H. G. Wagner, “Soot formation,” Prog. Energy Combust. Sci. 7, 229–273 (1981).
[CrossRef]

1978 (2)

S. Chippett, W. H. Gray, “The size and optical properties of soot particles,” Combust. Flame 31, 149–159 (1978).
[CrossRef]

H. Akima, “A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points,” ACM Trans. Math. Software 4, 148–159 (1978).
[CrossRef]

1974 (1)

L. A. Shepp, B. F. Logan, “Reconstructing interior head tissue from x-ray transmissions,” IEEE Trans. Nucl. Sci. NS-21, 228–236 (1974).
[CrossRef]

1971 (1)

G. N. Ramachandran, A. V. Lakshminarayanan, “Three dimensional reconstruction from radiographs and electron micrographs: applications of convolutions instead of Fourier transforms,” Proc. Natl. Acad. Sci. U.S.A. 68, 2236–2240 (1971).
[CrossRef]

1969 (1)

W. H. Dalzell, A. F. Serofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

1966 (1)

1826 (1)

N. H. Abel, “Auflosung einer mechanischen aufgabe,” J. Reiner Angew. Math. 1, 153–157 (1826).
[CrossRef]

Abel, N. H.

N. H. Abel, “Auflosung einer mechanischen aufgabe,” J. Reiner Angew. Math. 1, 153–157 (1826).
[CrossRef]

Akima, H.

H. Akima, “A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points,” ACM Trans. Math. Software 4, 148–159 (1978).
[CrossRef]

Baretta, F.

B. M. Vaglieco, F. Baretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Berry, M. V.

M. V. Berry, I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986).
[CrossRef]

Bonczyk, P. A.

P. A. Bonczyk, R. J. Hall, “Fractal properties of soot agglomerates,” Langmuir 7, 1274–1280 (1991).
[CrossRef]

R. J. Hall, P. A. Bonczyk, “Sooting flame thermometry using emission/absorption tomography,” Appl. Opt. 29, 4590–4598 (1990).
[CrossRef] [PubMed]

Bryner, N. P.

R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of the fractal soot optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

Buchele, D. R.

Chippett, S.

S. Chippett, W. H. Gray, “The size and optical properties of soot particles,” Combust. Flame 31, 149–159 (1978).
[CrossRef]

Choi, M. Y.

M. Y. Choi, K. O. Lee, “Investigation of sooting in microgravity droplet combustion,” in Proceedings of the Twenty-sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1997), Vol. 26, pp. 1243–1250.
[CrossRef]

D’Alessio, A.

B. M. Vaglieco, F. Baretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Dalzell, W. H.

W. H. Dalzell, A. F. Serofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Dändliker, R.

R. Dändliker, “Heterodyne holographic interferometry,” in Progress in Optics XVII, E. Wolf, ed., (North-Holland, Amsterdam, 1980), pp. 9–11.

Dasch, C. J.

Dobbins, D. A.

Dobbins, R. A.

R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of the fractal soot optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurement in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Emmerman, P. J.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical tomography for flowfield diagnostics,” Int. J. Heat Mass Transfer (7), 24, 1139–1150 (1981).
[CrossRef]

Faeth, G. M.

Ü. Ö. Köylü, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993).
[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992).
[CrossRef]

J. P. Gore, G. M. Faeth, “Structure and radiation properties of turbulent ethylene/air diffusion flames,” in Proceedings of the Twenty-First Symposiums (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1521–1531.

G. M. Faeth, Science requirements document for the Laminar Soot Processes Experiment (LSP), submitted to the National Aeronautics and Space Administration, Code UG (Apr.1996), pp. D.1–D.12.

Gore, J. P.

J. P. Gore, G. M. Faeth, “Structure and radiation properties of turbulent ethylene/air diffusion flames,” in Proceedings of the Twenty-First Symposiums (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1521–1531.

Goulard, R.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical tomography for flowfield diagnostics,” Int. J. Heat Mass Transfer (7), 24, 1139–1150 (1981).
[CrossRef]

Gray, W. H.

S. Chippett, W. H. Gray, “The size and optical properties of soot particles,” Combust. Flame 31, 149–159 (1978).
[CrossRef]

Greenberg, P. S.

P. S. Greenberg, J. C. Ku, “Soot volume fractions in normal and reduced gravity laminar acetylene diffusion flames,” Combust. Flame 108, 227–230 (1997).
[CrossRef]

J. C. Ku, L. Tong, P. S. Greenberg, “Measurements and modeling of soot formation in microgravity jet diffusion flames,” in Proceedings of the ASME Heat Transfer Division, (American Society of Mechanical Engineers, New York, 1996), Vol. 4, pp. 261–270.

Hall, R. J.

P. A. Bonczyk, R. J. Hall, “Fractal properties of soot agglomerates,” Langmuir 7, 1274–1280 (1991).
[CrossRef]

R. J. Hall, P. A. Bonczyk, “Sooting flame thermometry using emission/absorption tomography,” Appl. Opt. 29, 4590–4598 (1990).
[CrossRef] [PubMed]

Hayes, B. S.

B. S. Hayes, H. G. Wagner, “Soot formation,” Prog. Energy Combust. Sci. 7, 229–273 (1981).
[CrossRef]

Howell, J. R.

R. Siegell, J. R. Howell, Thermal Radiation and Heat Transfer, 2nd ed. (McGraw-Hill, New York, 1981), pp. 450–595.

Howes, W. L.

Hughey, B. J.

B. J. Hughey, D. A. Santavicca, “A comparison of techniques for reconstructing axisymmetric reacting flow fields from absorption measurements,” Combust. Sci. Technol. 29, 167–190 (1982).
[CrossRef]

Köylü, Ü. Ö.

Ü. Ö. Köylü, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993).
[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992).
[CrossRef]

Ku, J. C.

P. S. Greenberg, J. C. Ku, “Soot volume fractions in normal and reduced gravity laminar acetylene diffusion flames,” Combust. Flame 108, 227–230 (1997).
[CrossRef]

J. C. Ku, K. H. Shin, “Optical diagnostics and radiative properties of simulated soot aggregates,” J. Heat Transfer 115, 953–958 (1991).
[CrossRef]

J. C. Ku, L. Tong, P. S. Greenberg, “Measurements and modeling of soot formation in microgravity jet diffusion flames,” in Proceedings of the ASME Heat Transfer Division, (American Society of Mechanical Engineers, New York, 1996), Vol. 4, pp. 261–270.

Lakshminarayanan, A. V.

G. N. Ramachandran, A. V. Lakshminarayanan, “Three dimensional reconstruction from radiographs and electron micrographs: applications of convolutions instead of Fourier transforms,” Proc. Natl. Acad. Sci. U.S.A. 68, 2236–2240 (1971).
[CrossRef]

Lee, K. O.

M. Y. Choi, K. O. Lee, “Investigation of sooting in microgravity droplet combustion,” in Proceedings of the Twenty-sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1997), Vol. 26, pp. 1243–1250.
[CrossRef]

Lee, S. C.

C. L. Tien, S. C. Lee, “Flame radiation,” Prog. Energy Combust. Sci. 8, 41–59 (1982).
[CrossRef]

Logan, B. F.

L. A. Shepp, B. F. Logan, “Reconstructing interior head tissue from x-ray transmissions,” IEEE Trans. Nucl. Sci. NS-21, 228–236 (1974).
[CrossRef]

Megaridis, C. M.

D. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991).
[CrossRef] [PubMed]

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

Mountain, R. D.

R. D. Mountain, G. W. Mulholland, “Light scattering from simulated smoke aggregates,” Langmuir 4, 1321–1326 (1988).
[CrossRef]

Mulholland, G. W.

R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of the fractal soot optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

R. D. Mountain, G. W. Mulholland, “Light scattering from simulated smoke aggregates,” Langmuir 4, 1321–1326 (1988).
[CrossRef]

Percival, I. C.

M. V. Berry, I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986).
[CrossRef]

Puri, R.

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

Ramachandran, G. N.

G. N. Ramachandran, A. V. Lakshminarayanan, “Three dimensional reconstruction from radiographs and electron micrographs: applications of convolutions instead of Fourier transforms,” Proc. Natl. Acad. Sci. U.S.A. 68, 2236–2240 (1971).
[CrossRef]

Richardson, T. F.

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

Santavicca, D. A.

B. J. Hughey, D. A. Santavicca, “A comparison of techniques for reconstructing axisymmetric reacting flow fields from absorption measurements,” Combust. Sci. Technol. 29, 167–190 (1982).
[CrossRef]

Santoro, R. J.

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurement in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical tomography for flowfield diagnostics,” Int. J. Heat Mass Transfer (7), 24, 1139–1150 (1981).
[CrossRef]

Semerjian, H. G.

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurement in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical tomography for flowfield diagnostics,” Int. J. Heat Mass Transfer (7), 24, 1139–1150 (1981).
[CrossRef]

Serofim, A. F.

W. H. Dalzell, A. F. Serofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Shepp, L. A.

L. A. Shepp, B. F. Logan, “Reconstructing interior head tissue from x-ray transmissions,” IEEE Trans. Nucl. Sci. NS-21, 228–236 (1974).
[CrossRef]

Shin, K. H.

J. C. Ku, K. H. Shin, “Optical diagnostics and radiative properties of simulated soot aggregates,” J. Heat Transfer 115, 953–958 (1991).
[CrossRef]

Siegell, R.

R. Siegell, J. R. Howell, Thermal Radiation and Heat Transfer, 2nd ed. (McGraw-Hill, New York, 1981), pp. 450–595.

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990), Chap. 6, pp. 133–158.

Tien, C. L.

C. L. Tien, S. C. Lee, “Flame radiation,” Prog. Energy Combust. Sci. 8, 41–59 (1982).
[CrossRef]

Tong, L.

J. C. Ku, L. Tong, P. S. Greenberg, “Measurements and modeling of soot formation in microgravity jet diffusion flames,” in Proceedings of the ASME Heat Transfer Division, (American Society of Mechanical Engineers, New York, 1996), Vol. 4, pp. 261–270.

Vaglieco, B. M.

B. M. Vaglieco, F. Baretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Wagner, H. G.

B. S. Hayes, H. G. Wagner, “Soot formation,” Prog. Energy Combust. Sci. 7, 229–273 (1981).
[CrossRef]

ACM Trans. Math. Software (1)

H. Akima, “A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points,” ACM Trans. Math. Software 4, 148–159 (1978).
[CrossRef]

Appl. Opt. (3)

Atmos. Environ. (1)

R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of the fractal soot optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

Combust. Flame (6)

S. Chippett, W. H. Gray, “The size and optical properties of soot particles,” Combust. Flame 31, 149–159 (1978).
[CrossRef]

B. M. Vaglieco, F. Baretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combust. Flame 89, 140–156 (1992).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurement in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

P. S. Greenberg, J. C. Ku, “Soot volume fractions in normal and reduced gravity laminar acetylene diffusion flames,” Combust. Flame 108, 227–230 (1997).
[CrossRef]

Combust. Sci. Technol. (1)

B. J. Hughey, D. A. Santavicca, “A comparison of techniques for reconstructing axisymmetric reacting flow fields from absorption measurements,” Combust. Sci. Technol. 29, 167–190 (1982).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

L. A. Shepp, B. F. Logan, “Reconstructing interior head tissue from x-ray transmissions,” IEEE Trans. Nucl. Sci. NS-21, 228–236 (1974).
[CrossRef]

Int. J. Heat Mass Transfer (7) (1)

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical tomography for flowfield diagnostics,” Int. J. Heat Mass Transfer (7), 24, 1139–1150 (1981).
[CrossRef]

J. Heat Transfer (3)

W. H. Dalzell, A. F. Serofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

J. C. Ku, K. H. Shin, “Optical diagnostics and radiative properties of simulated soot aggregates,” J. Heat Transfer 115, 953–958 (1991).
[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Reiner Angew. Math. (1)

N. H. Abel, “Auflosung einer mechanischen aufgabe,” J. Reiner Angew. Math. 1, 153–157 (1826).
[CrossRef]

Langmuir (3)

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

R. D. Mountain, G. W. Mulholland, “Light scattering from simulated smoke aggregates,” Langmuir 4, 1321–1326 (1988).
[CrossRef]

P. A. Bonczyk, R. J. Hall, “Fractal properties of soot agglomerates,” Langmuir 7, 1274–1280 (1991).
[CrossRef]

Opt. Acta (1)

M. V. Berry, I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. N. Ramachandran, A. V. Lakshminarayanan, “Three dimensional reconstruction from radiographs and electron micrographs: applications of convolutions instead of Fourier transforms,” Proc. Natl. Acad. Sci. U.S.A. 68, 2236–2240 (1971).
[CrossRef]

Prog. Energy Combust. Sci. (2)

B. S. Hayes, H. G. Wagner, “Soot formation,” Prog. Energy Combust. Sci. 7, 229–273 (1981).
[CrossRef]

C. L. Tien, S. C. Lee, “Flame radiation,” Prog. Energy Combust. Sci. 8, 41–59 (1982).
[CrossRef]

Other (7)

J. P. Gore, G. M. Faeth, “Structure and radiation properties of turbulent ethylene/air diffusion flames,” in Proceedings of the Twenty-First Symposiums (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1521–1531.

R. Siegell, J. R. Howell, Thermal Radiation and Heat Transfer, 2nd ed. (McGraw-Hill, New York, 1981), pp. 450–595.

R. Dändliker, “Heterodyne holographic interferometry,” in Progress in Optics XVII, E. Wolf, ed., (North-Holland, Amsterdam, 1980), pp. 9–11.

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990), Chap. 6, pp. 133–158.

G. M. Faeth, Science requirements document for the Laminar Soot Processes Experiment (LSP), submitted to the National Aeronautics and Space Administration, Code UG (Apr.1996), pp. D.1–D.12.

M. Y. Choi, K. O. Lee, “Investigation of sooting in microgravity droplet combustion,” in Proceedings of the Twenty-sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1997), Vol. 26, pp. 1243–1250.
[CrossRef]

J. C. Ku, L. Tong, P. S. Greenberg, “Measurements and modeling of soot formation in microgravity jet diffusion flames,” in Proceedings of the ASME Heat Transfer Division, (American Society of Mechanical Engineers, New York, 1996), Vol. 4, pp. 261–270.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical configuration for soot volume fraction imaging measurements.

Fig. 2
Fig. 2

Unattenuated reference image with no diffuser present.

Fig. 3
Fig. 3

Unattenuated reference image with rotating diffuser plate used to corrupt coherence of the source.

Fig. 4
Fig. 4

Absorbance map corresponding to the 3.85-cm3/s laminar ethylene diffusion flame.

Fig. 5
Fig. 5

Soot volume fraction map corresponding to the 3.85-cm3/s laminar ethylene diffusion flame.

Fig. 6
Fig. 6

Comparison of transmittance data with data of Santoro et al.3

Fig. 7
Fig. 7

Comparison of soot volume fractions with data of Santoro et al.3

Fig. 8
Fig. 8

Absorbance data for the 2-cm3/s laminar ethylene diffusion flame, demonstrating the effect of temporal averaging.

Fig. 9
Fig. 9

Absorbance data for the 2-cm3/s laminar ethylene diffusion flame. Unsmoothed and smoothed profiles are shown for both single-shot and temporally averaged data sets.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dIλds=-keλIλ,
lnIλ/Iλ0=-+ keλds.
keλ=π2λEm˜N 0 PDD3dD,
Em˜=-Imm˜2-1m˜2+2.
Dpq=0PDDpdD0PDDQdD1/p-q.
fν=π6ND303
fν=λkeλ6πEm˜.
Nrms=1Ni=12nAo,i-As,i21/2,

Metrics