Abstract

The accuracy of detector calibration in the UV, vacuum-ultraviolet, and soft-x-ray spectral ranges could be significantly improved by the use of the synchrotron radiation electrical substitution radiometer (SYRES) as the primary detector standard. The SYRES radiometer is optimized for use with spectrally dispersed synchrotron radiation as supplied by two monochromator beam lines in the radiometry laboratory of the Physikalisch-Technische Bundesanstalt at the Berlin electron-storage ring (BESSY). Wavelength ranges from 0.8 to 25 nm and from 35 to 400 nm are covered. The typically available radiant power of ∼1–10 µW can be measured with the SYRES radiometer with a standard relative uncertainty of less than 0.2%. The spectral responsivity of qualified photodiodes for use as secondary detector standards is determined by direct comparison with the primary detector standard at an arbitrary wavelength. At present, the scale of spectral responsivity is realized with a standard relative uncertainty of well below 1% in the spectral ranges 0.8–3.5 nm, 5–25 nm, and 120–400 nm. We provide a comprehensive description of the SYRES radiometer and of the two facilities for detector calibration in the UV and vacuum-ultraviolet spectral ranges and in the soft-x-ray spectral range, respectively, and we discuss the achievable uncertainties in the calibration of detectors.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Hengstberger, ed., Absolute Radiometry: Electrical Calibrated Thermal Detectors of Optical Radiation (Academic, Boston, 1989), Chaps. 1, 3.
  2. J. E. Martin, in Metrology at the Frontiers of Physics and Technology, L. Crovini, T. J. Quinn, eds. (North-Holland, Amsterdam, 1992), pp. 361–404.
  3. J. E. Martin, N. P. Fox, P. G. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
    [CrossRef]
  4. T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between -40 °C and +100 °C,” Philos. Trans. R. Soc. London A316, 85–189 (1985).
    [CrossRef]
  5. N. P. Fox, “Radiometry with cryogenic radiometers and semiconductor photodiodes,” Metrologia 32, 535–543 (1995–1996).
    [CrossRef]
  6. T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991).
    [CrossRef]
  7. T. R. Gentile, J. M. Houston, J. E. Hardis, C. L. Cromer, A. C. Parr, “National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 1056–1068 (1996).
    [CrossRef] [PubMed]
  8. N. P. Fox, J. E. Martin, “A further intercomparison of two cryogenic radiometers,” in Optical Radiation Measurements II, J. M. Palmer, ed., Proc. SPIE1109, 227–235 (1989).
    [CrossRef]
  9. N. P. Fox, J. E. Martin, “Comparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%,” Appl. Opt. 29, 4686–4693 (1990).
    [CrossRef] [PubMed]
  10. P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers,” Appl. Opt. 29, 988–993 (1990).
    [CrossRef] [PubMed]
  11. L. Fu, J. Fischer, “Characterization of photodiodes in the visible spectral range based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
    [CrossRef]
  12. T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
    [CrossRef] [PubMed]
  13. T. Verpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
    [CrossRef]
  14. T. Verpula, L. Liedquist, H. Ludvigsen, H. Reyn, J. de Vreede, “Comparison of quantum-efficient silicon photodetectors with a cryogenic absolute radiometer at laser wavelength 543.5 nm,” Metrologia 28, 349–352 (1991).
    [CrossRef]
  15. R. Köhler, R. Goebel, R. Pello, O. Touayar, J. Bastie, “First measurements with the BIPM cryogenic radiometer and comparison with the INM cryogenic radiometer,” Metrologia 32, 551–555 (1995–1996).
    [CrossRef]
  16. O. Touayar, H. Reyn, J. Bastie, T. Varpula, “Indirect comparison of cryogenic radiometers from the INM (France) and the VTT (Finland) with a QED-200 from the VSL (Netherlands),” Metrologia 32, 561–564 (1995–1996).
    [CrossRef]
  17. S. P. Morozova, V. A. Konovodchenko, V. I. Sapritzky, B. E. Lisiansky, P. A. Morozov, U. A. Melenevsky, A. G. Petic, “An absolute cryogenic radiometer for laser calibration and characterization of photodetectors,” Metrologia 32, 557–560 (1995–1996).
    [CrossRef]
  18. K. D. Stock, H. Hofer, “PTB primary standard for optical radiant power: transfer-optimized facility in the clean-room centre,” Metrologia 32, 545–549 (1995–1996).
    [CrossRef]
  19. M. G. White, A. Bittar, “Uniformity and quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361–364 (1993).
    [CrossRef]
  20. W. Budde, “Definition of the linearity range of Si photodiodes,” Appl. Opt. 22, 1780–1784 (1983).
    [CrossRef] [PubMed]
  21. J. Fischer, L. Fu, “Photodiode nonlinearity measurement with an intensity stabilized laser as a radiation source,” Appl. Opt. 32, 4187–4190 (1993).
    [CrossRef] [PubMed]
  22. E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
    [CrossRef] [PubMed]
  23. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
    [CrossRef]
  24. M. Stock, J. Fischer, R. Friedrich, H. J. Jung, B. Wende, “The double-heatpipe blackbody: a high-accuracy standard source of spectral irradiance for measurements of T-T90,” Metrologia 32, 441–444 (1995–1996).
    [CrossRef]
  25. T. C. Larason, S. S. Bruce, C. L. Cromer, “The NIST high accuracy scale for absolute spectral response from 406 nm to 920 nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
    [CrossRef]
  26. J. Geist, A. M. Robinson, C. R. James, “Numerical modeling of silicon photodiodes for high-accuracy applications. Part III: Interpolating and extrapolating internal quantum-efficiency calibrations,” J. Res. Natl. Inst. Stand. Technol. 96, 481–492 (1991).
    [CrossRef]
  27. N. M. Durant, N. P. Fox, “A physical basis for the extrapolation of silicon photodiode efficiency into the ultraviolet,” Metrologia 30, 345–350 (1993).
    [CrossRef]
  28. A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, B. Wende, “First results with the new PTB cryogenic radiometer for the vacuum ultraviolet spectral range,” Metrologia 32, 571–574 (1995–1996).
    [CrossRef]
  29. F. Scholze, M. Krumrey, P. Müller, D. Fuchs, “Plane grating monochromator beam line for VUV radiometry,” Rev. Sci. Instrum. 65, 3229–3232 (1994).
    [CrossRef]
  30. A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, “New detector calibration facility for the wavelength range 35–400 nm based on an electrical substitution radiometer,” Rev. Sci. Instrum. 66, 2324–2326 (1995).
    [CrossRef]
  31. G. Ulm, B. Wende, “The radiometry laboratory of PTB at BESSY,” Rev. Sci. Instrum. 66, 2244–2247 (1995).
    [CrossRef]
  32. B. Wende, “Radiometry with synchrotron radiation,” Metrologia 32, 419–424 (1995–1996).
    [CrossRef]
  33. H. Rabus, F. Scholze, R. Thornagel, G. Ulm, “Detector calibration at the PTB radiometry laboratory at BESSY,” Nucl. Instrum. Methods A 377, 209–216 (1996).
    [CrossRef]
  34. L. P. Boivin, K. Gibb, “Monochromator-based cryogenic radiometry at the NRCC,” Metrologia 32, 565–570 (1995–1996).
    [CrossRef]
  35. J. A. R. Samson, “Absolute intensity measurement in the vacuum ultraviolet,” J. Opt. Soc. Am. 54, 6–15 (1964).
    [CrossRef]
  36. L. R. Canfield, N. Swanson, “Far ultraviolet detector standards,” J. Res. Natl. Bur. Stand. 92, 97–112 (1987).
    [CrossRef]
  37. L. R. Canfield, “New far UV detector calibration facility at the National Bureau of Standards,” Appl. Opt. 26, 3831–3837 (1987).
    [CrossRef] [PubMed]
  38. T. Saito, H. Onuki, “Detector calibration in the 10–60 nm spectral range at the Electrotechnical Laboratory,” J. Opt. (Paris) 24, 23–30 (1993).
    [CrossRef]
  39. T. Saito, H. Onuki, “Detector calibration in the wavelength region 10–100 nm based on windowless rare gas ionisation chamber,” Metrologia 32, 525–529 (1995–1996).
    [CrossRef]
  40. J. A. R. Samson, G. N. Haddad, “Absolute photon flux measurement in the vacuum ultraviolet,” J. Opt. Soc. Am. 64, 47–54 (1974).
    [CrossRef]
  41. M. L. Furst, R. M. Graves, L. R. Canfield, R. E. Vest, “Radiometry at the NIST SURF II storage ring facility,” Rev. Sci. Instrum. 66, 2257–2259 (1995).
    [CrossRef]
  42. R. E. Vest, L. R. Canfield, M. L. Furst, R. P. Madden, N. Swanson, “Dual grating monochromator for detector calibration using synchrotron radiation as an absolute source at NIST,” Nucl. Instrum. Methods A 347, 291–294 (1994).
    [CrossRef]
  43. M. Krumrey, E. Tegeler, R. Thornagel, G. Ulm, “Calibration of semiconductor photodiodes as soft-x-ray detectors,” Rev. Sci. Instrum. 60, 2291–2294 (1989).
    [CrossRef]
  44. D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992).
    [CrossRef]
  45. F. Scholze, G. Ulm, “Characterization of a windowless Si(Li) detector in the photon energy range 0.1–5 keV,” Nucl. Instrum. Methods A 339, 49–54 (1994).
    [CrossRef]
  46. U. Kroth, N. Saito, E. Tegeler, “Quantum efficiency of a semiconductor photodiode in the VUV determined by comparison with a proportional counter in monochromatized synchrotron radiation,” Appl. Opt. 29, 2659–2661 (1990).
    [CrossRef] [PubMed]
  47. M. Krumrey, E. Tegeler, “Self-calibration of semiconductor photodiodes in the soft-x-ray region,” Rev. Sci. Instrum. 63, 797–801 (1992).
    [CrossRef]
  48. N. Ahr, E. Tegeler, “Electrically calibrated cryogenic bolometers as primary detectors in the soft-x-ray region,” Nucl. Instrum. Methods A 319, 387–392 (1992).
    [CrossRef]
  49. R. Köhler, R. Goebel, R. Pello, “Report on the international comparison of spectral responsivity of silicon detectors,” Metrologia 32, 463–468 (1995–1996).
    [CrossRef]
  50. Z. M. Zhang, R. U. Datla, S. R. Lorentz, H. C. Tang, “Thermal modeling of absolute cryogenic radiometers,” J. Heat Transfer 116, 993–998 (1994).
    [CrossRef]
  51. L. Fu, “Aufbau einer Skala für spektrale Strahlungsleistung im Spektralbereich 250 nm bis 800 nm mit einem Kryoradiometer als Primärnormal und Photodioden als Transfernormalen,” Ph.D. thesis (Technical University Berlin, Berlin, Germany, 1993).
  52. K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
    [CrossRef]
  53. R. U. Datla, K. Stock, A. C. Parr, C. C. Hoyt, P. J. Miller, P. V. Foukal, “Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurement,” Appl. Opt. 31, 7219–7225 (1992).
    [CrossRef] [PubMed]
  54. S. R. Lorentz, S. C. Ebner, J. H. Walker, R. U. Datla, “NIST low-background infrared spectral calibration facility,” Metrologia 32, 621–624 (1995–1996).
    [CrossRef]
  55. Reference to commercial products is provided in the text to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the Physikalisch-Technische Bundesanstalt, nor does it imply that the products are necessarily the best available for the purpose.
  56. Guide to the Expression of Uncertainty in Measurement [International Organization for Standardization, (ISO), Geneva, Switzerland, 1993].
  57. F. Hengstberger, “An improved theory of the instrumental corrections for absolute radiometers,” Metrologia 13, 69–78 (1977).
    [CrossRef]
  58. J. C. de Vos, “Evaluation of the quality of a blackbody,” Physica 20, 669–689 (1954).
    [CrossRef]
  59. D. Fuchs, M. Krumrey, T. Lederer, P. Müller, F. Scholze, G. Ulm, “High precision soft-x-ray reflectometer,” Rev. Sci. Instrum. 66, 2248–2251 (1995).
    [CrossRef]
  60. Ion etched holographic grating, 600 grooves/mm, blank material: quartz, coating: aluminum with a MgF2 protective coating, manufacturer: Hyperfine Inc., Boulder, Colo.
  61. Ion etched holographic grating, 1200 grooves/mm, blaze wavelength: 60 nm, blank material: quartz, coating: silicon carbide, manufacturer: Hyperfine Inc., Boulder, Colo.
  62. Ion etched holographic grating, 2400 grooves/mm, blank material: quartz, coating: iridium–osmium, manufacturer: Hyperfine Inc., Boulder, Colo.
  63. H. Petersen, “The plane grating and elliptical mirror: a new optical configuration for monochromators,” Opt. Commun. 40, 402–406 (1982).
    [CrossRef]
  64. Both gratings: blank material: Zerodur, coating: gold, manufacturer: Zeiss, Oberkochem, Germany; grating 1: original ruled, 366 grooves/mm, blaze angle: 3.9°; grating 2: ion etched holographic, 1221 grooves/mm, blaze angle: 1.4°.
  65. N. M. Durant, N. Fox, “Evaluation of solid-state detectors for radiometric applications,” Metrologia 32, 505–508 (1995–1996).
    [CrossRef]
  66. R. Goebel, R. Köhler, R. Pello, “Some effects of low radiant power UV radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995–1996).
    [CrossRef]
  67. M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433–7473 (1996).
    [CrossRef]
  68. E. Tegeler, M. Krumrey, “Stability of semiconductor photodiodes as VUV detectors,” Nucl. Instrum. Methods A 282, 701–705 (1989).
    [CrossRef]
  69. A. D. Wilson, H. Lyall, “Design of an UV radiometer,” Appl. Opt. 26, 4530–4546 (1986).
    [CrossRef]
  70. R. E. Vest, L. R. Canfield, “Evaluation of Au/GaAsP and Au/GaP Schottky photodiodes as radiometric detectors in the EUV,” in Proceedings of the Synchrotron Radiation Instrumentation Conference (SRI) 1995, Rev. Sci. Instrum. (special issue)67(9) CD-ROM (1996).
  71. A. Lau-Främbs, “Entwicklung der Radiometrie mit Synchrotronstrahlung im Spektralbereich 170 bis 400 nm mit einem Kryoradiometer als Primärnormal und Halbleiter-Photodioden als Transfernormale,” Ph.D. thesis (Technical University Berlin, Berlin, Germany, 1995).
  72. K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
    [CrossRef]
  73. F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron-hole pair creation energy in crystalline silicon for photons in the 50 eV to 1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
    [CrossRef]
  74. R. Korde, J. Geist, “Quantum effiency stability of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987).
    [CrossRef] [PubMed]
  75. R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
    [CrossRef]
  76. E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft-x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
    [CrossRef]
  77. F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self-calibration in the soft-x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).
  78. G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).
  79. R. Klein, M. Krumrey, H. Rabus, F. Scholze, R. Thornagel, G. Ulm, B. Wende, “PTB Laboratory for Radiometry at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 114–118.
  80. U. Flechsig, F. Eggenstein, F. Senf, W. Gudat, R. Klein, H. Rabus, G. Ulm, “A plane grating monochromator for the PTB undulator beamline at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 544–547.

1997

G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).

1996

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft-x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

T. R. Gentile, J. M. Houston, J. E. Hardis, C. L. Cromer, A. C. Parr, “National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 1056–1068 (1996).
[CrossRef] [PubMed]

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
[CrossRef] [PubMed]

T. C. Larason, S. S. Bruce, C. L. Cromer, “The NIST high accuracy scale for absolute spectral response from 406 nm to 920 nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
[CrossRef]

H. Rabus, F. Scholze, R. Thornagel, G. Ulm, “Detector calibration at the PTB radiometry laboratory at BESSY,” Nucl. Instrum. Methods A 377, 209–216 (1996).
[CrossRef]

M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433–7473 (1996).
[CrossRef]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron-hole pair creation energy in crystalline silicon for photons in the 50 eV to 1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

1995

D. Fuchs, M. Krumrey, T. Lederer, P. Müller, F. Scholze, G. Ulm, “High precision soft-x-ray reflectometer,” Rev. Sci. Instrum. 66, 2248–2251 (1995).
[CrossRef]

M. L. Furst, R. M. Graves, L. R. Canfield, R. E. Vest, “Radiometry at the NIST SURF II storage ring facility,” Rev. Sci. Instrum. 66, 2257–2259 (1995).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, “New detector calibration facility for the wavelength range 35–400 nm based on an electrical substitution radiometer,” Rev. Sci. Instrum. 66, 2324–2326 (1995).
[CrossRef]

G. Ulm, B. Wende, “The radiometry laboratory of PTB at BESSY,” Rev. Sci. Instrum. 66, 2244–2247 (1995).
[CrossRef]

1994

F. Scholze, M. Krumrey, P. Müller, D. Fuchs, “Plane grating monochromator beam line for VUV radiometry,” Rev. Sci. Instrum. 65, 3229–3232 (1994).
[CrossRef]

R. E. Vest, L. R. Canfield, M. L. Furst, R. P. Madden, N. Swanson, “Dual grating monochromator for detector calibration using synchrotron radiation as an absolute source at NIST,” Nucl. Instrum. Methods A 347, 291–294 (1994).
[CrossRef]

Z. M. Zhang, R. U. Datla, S. R. Lorentz, H. C. Tang, “Thermal modeling of absolute cryogenic radiometers,” J. Heat Transfer 116, 993–998 (1994).
[CrossRef]

F. Scholze, G. Ulm, “Characterization of a windowless Si(Li) detector in the photon energy range 0.1–5 keV,” Nucl. Instrum. Methods A 339, 49–54 (1994).
[CrossRef]

1993

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
[CrossRef]

T. Saito, H. Onuki, “Detector calibration in the 10–60 nm spectral range at the Electrotechnical Laboratory,” J. Opt. (Paris) 24, 23–30 (1993).
[CrossRef]

M. G. White, A. Bittar, “Uniformity and quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361–364 (1993).
[CrossRef]

N. M. Durant, N. P. Fox, “A physical basis for the extrapolation of silicon photodiode efficiency into the ultraviolet,” Metrologia 30, 345–350 (1993).
[CrossRef]

L. Fu, J. Fischer, “Characterization of photodiodes in the visible spectral range based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
[CrossRef]

J. Fischer, L. Fu, “Photodiode nonlinearity measurement with an intensity stabilized laser as a radiation source,” Appl. Opt. 32, 4187–4190 (1993).
[CrossRef] [PubMed]

1992

R. U. Datla, K. Stock, A. C. Parr, C. C. Hoyt, P. J. Miller, P. V. Foukal, “Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurement,” Appl. Opt. 31, 7219–7225 (1992).
[CrossRef] [PubMed]

D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992).
[CrossRef]

M. Krumrey, E. Tegeler, “Self-calibration of semiconductor photodiodes in the soft-x-ray region,” Rev. Sci. Instrum. 63, 797–801 (1992).
[CrossRef]

N. Ahr, E. Tegeler, “Electrically calibrated cryogenic bolometers as primary detectors in the soft-x-ray region,” Nucl. Instrum. Methods A 319, 387–392 (1992).
[CrossRef]

1991

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991).
[CrossRef]

J. Geist, A. M. Robinson, C. R. James, “Numerical modeling of silicon photodiodes for high-accuracy applications. Part III: Interpolating and extrapolating internal quantum-efficiency calibrations,” J. Res. Natl. Inst. Stand. Technol. 96, 481–492 (1991).
[CrossRef]

T. Verpula, L. Liedquist, H. Ludvigsen, H. Reyn, J. de Vreede, “Comparison of quantum-efficient silicon photodetectors with a cryogenic absolute radiometer at laser wavelength 543.5 nm,” Metrologia 28, 349–352 (1991).
[CrossRef]

1990

1989

T. Verpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
[CrossRef]

E. Tegeler, M. Krumrey, “Stability of semiconductor photodiodes as VUV detectors,” Nucl. Instrum. Methods A 282, 701–705 (1989).
[CrossRef]

M. Krumrey, E. Tegeler, R. Thornagel, G. Ulm, “Calibration of semiconductor photodiodes as soft-x-ray detectors,” Rev. Sci. Instrum. 60, 2291–2294 (1989).
[CrossRef]

1987

1986

A. D. Wilson, H. Lyall, “Design of an UV radiometer,” Appl. Opt. 26, 4530–4546 (1986).
[CrossRef]

1985

J. E. Martin, N. P. Fox, P. G. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
[CrossRef]

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between -40 °C and +100 °C,” Philos. Trans. R. Soc. London A316, 85–189 (1985).
[CrossRef]

1983

1982

H. Petersen, “The plane grating and elliptical mirror: a new optical configuration for monochromators,” Opt. Commun. 40, 402–406 (1982).
[CrossRef]

1977

F. Hengstberger, “An improved theory of the instrumental corrections for absolute radiometers,” Metrologia 13, 69–78 (1977).
[CrossRef]

1974

1964

1954

J. C. de Vos, “Evaluation of the quality of a blackbody,” Physica 20, 669–689 (1954).
[CrossRef]

Ahr, N.

N. Ahr, E. Tegeler, “Electrically calibrated cryogenic bolometers as primary detectors in the soft-x-ray region,” Nucl. Instrum. Methods A 319, 387–392 (1992).
[CrossRef]

Arnold, D.

D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992).
[CrossRef]

Bastie, J.

O. Touayar, H. Reyn, J. Bastie, T. Varpula, “Indirect comparison of cryogenic radiometers from the INM (France) and the VTT (Finland) with a QED-200 from the VSL (Netherlands),” Metrologia 32, 561–564 (1995–1996).
[CrossRef]

R. Köhler, R. Goebel, R. Pello, O. Touayar, J. Bastie, “First measurements with the BIPM cryogenic radiometer and comparison with the INM cryogenic radiometer,” Metrologia 32, 551–555 (1995–1996).
[CrossRef]

Bautz, M.

G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).

Bittar, A.

M. G. White, A. Bittar, “Uniformity and quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361–364 (1993).
[CrossRef]

Boivin, L. P.

L. P. Boivin, K. Gibb, “Monochromator-based cryogenic radiometry at the NRCC,” Metrologia 32, 565–570 (1995–1996).
[CrossRef]

Bruce, S. S.

T. C. Larason, S. S. Bruce, C. L. Cromer, “The NIST high accuracy scale for absolute spectral response from 406 nm to 920 nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
[CrossRef]

Budde, W.

Cable, J. S.

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

Canfield, L. R.

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft-x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

M. L. Furst, R. M. Graves, L. R. Canfield, R. E. Vest, “Radiometry at the NIST SURF II storage ring facility,” Rev. Sci. Instrum. 66, 2257–2259 (1995).
[CrossRef]

R. E. Vest, L. R. Canfield, M. L. Furst, R. P. Madden, N. Swanson, “Dual grating monochromator for detector calibration using synchrotron radiation as an absolute source at NIST,” Nucl. Instrum. Methods A 347, 291–294 (1994).
[CrossRef]

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

L. R. Canfield, “New far UV detector calibration facility at the National Bureau of Standards,” Appl. Opt. 26, 3831–3837 (1987).
[CrossRef] [PubMed]

L. R. Canfield, N. Swanson, “Far ultraviolet detector standards,” J. Res. Natl. Bur. Stand. 92, 97–112 (1987).
[CrossRef]

R. E. Vest, L. R. Canfield, “Evaluation of Au/GaAsP and Au/GaP Schottky photodiodes as radiometric detectors in the EUV,” in Proceedings of the Synchrotron Radiation Instrumentation Conference (SRI) 1995, Rev. Sci. Instrum. (special issue)67(9) CD-ROM (1996).

Cromer, C. L.

Datla, R. U.

S. R. Lorentz, S. C. Ebner, J. H. Walker, R. U. Datla, “NIST low-background infrared spectral calibration facility,” Metrologia 32, 621–624 (1995–1996).
[CrossRef]

Z. M. Zhang, R. U. Datla, S. R. Lorentz, H. C. Tang, “Thermal modeling of absolute cryogenic radiometers,” J. Heat Transfer 116, 993–998 (1994).
[CrossRef]

R. U. Datla, K. Stock, A. C. Parr, C. C. Hoyt, P. J. Miller, P. V. Foukal, “Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurement,” Appl. Opt. 31, 7219–7225 (1992).
[CrossRef] [PubMed]

de Vos, J. C.

J. C. de Vos, “Evaluation of the quality of a blackbody,” Physica 20, 669–689 (1954).
[CrossRef]

de Vreede, J.

T. Verpula, L. Liedquist, H. Ludvigsen, H. Reyn, J. de Vreede, “Comparison of quantum-efficient silicon photodetectors with a cryogenic absolute radiometer at laser wavelength 543.5 nm,” Metrologia 28, 349–352 (1991).
[CrossRef]

Duda, C. R.

Durant, N. M.

N. M. Durant, N. Fox, “Evaluation of solid-state detectors for radiometric applications,” Metrologia 32, 505–508 (1995–1996).
[CrossRef]

N. M. Durant, N. P. Fox, “A physical basis for the extrapolation of silicon photodiode efficiency into the ultraviolet,” Metrologia 30, 345–350 (1993).
[CrossRef]

Ebner, S. C.

S. R. Lorentz, S. C. Ebner, J. H. Walker, R. U. Datla, “NIST low-background infrared spectral calibration facility,” Metrologia 32, 621–624 (1995–1996).
[CrossRef]

Eggenstein, F.

U. Flechsig, F. Eggenstein, F. Senf, W. Gudat, R. Klein, H. Rabus, G. Ulm, “A plane grating monochromator for the PTB undulator beamline at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 544–547.

Fischer, J.

M. Stock, J. Fischer, R. Friedrich, H. J. Jung, B. Wende, “The double-heatpipe blackbody: a high-accuracy standard source of spectral irradiance for measurements of T-T90,” Metrologia 32, 441–444 (1995–1996).
[CrossRef]

L. Fu, J. Fischer, “Characterization of photodiodes in the visible spectral range based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
[CrossRef]

J. Fischer, L. Fu, “Photodiode nonlinearity measurement with an intensity stabilized laser as a radiation source,” Appl. Opt. 32, 4187–4190 (1993).
[CrossRef] [PubMed]

Flechsig, U.

U. Flechsig, F. Eggenstein, F. Senf, W. Gudat, R. Klein, H. Rabus, G. Ulm, “A plane grating monochromator for the PTB undulator beamline at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 544–547.

Foukal, P. V.

Fox, N.

N. M. Durant, N. Fox, “Evaluation of solid-state detectors for radiometric applications,” Metrologia 32, 505–508 (1995–1996).
[CrossRef]

Fox, N. P.

N. P. Fox, “Radiometry with cryogenic radiometers and semiconductor photodiodes,” Metrologia 32, 535–543 (1995–1996).
[CrossRef]

N. M. Durant, N. P. Fox, “A physical basis for the extrapolation of silicon photodiode efficiency into the ultraviolet,” Metrologia 30, 345–350 (1993).
[CrossRef]

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

N. P. Fox, J. E. Martin, “Comparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%,” Appl. Opt. 29, 4686–4693 (1990).
[CrossRef] [PubMed]

J. E. Martin, N. P. Fox, P. G. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
[CrossRef]

N. P. Fox, J. E. Martin, “A further intercomparison of two cryogenic radiometers,” in Optical Radiation Measurements II, J. M. Palmer, ed., Proc. SPIE1109, 227–235 (1989).
[CrossRef]

Friedrich, R.

M. Stock, J. Fischer, R. Friedrich, H. J. Jung, B. Wende, “The double-heatpipe blackbody: a high-accuracy standard source of spectral irradiance for measurements of T-T90,” Metrologia 32, 441–444 (1995–1996).
[CrossRef]

Fu, L.

L. Fu, J. Fischer, “Characterization of photodiodes in the visible spectral range based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
[CrossRef]

J. Fischer, L. Fu, “Photodiode nonlinearity measurement with an intensity stabilized laser as a radiation source,” Appl. Opt. 32, 4187–4190 (1993).
[CrossRef] [PubMed]

L. Fu, “Aufbau einer Skala für spektrale Strahlungsleistung im Spektralbereich 250 nm bis 800 nm mit einem Kryoradiometer als Primärnormal und Photodioden als Transfernormalen,” Ph.D. thesis (Technical University Berlin, Berlin, Germany, 1993).

Fuchs, D.

D. Fuchs, M. Krumrey, T. Lederer, P. Müller, F. Scholze, G. Ulm, “High precision soft-x-ray reflectometer,” Rev. Sci. Instrum. 66, 2248–2251 (1995).
[CrossRef]

F. Scholze, M. Krumrey, P. Müller, D. Fuchs, “Plane grating monochromator beam line for VUV radiometry,” Rev. Sci. Instrum. 65, 3229–3232 (1994).
[CrossRef]

Furst, M. L.

M. L. Furst, R. M. Graves, L. R. Canfield, R. E. Vest, “Radiometry at the NIST SURF II storage ring facility,” Rev. Sci. Instrum. 66, 2257–2259 (1995).
[CrossRef]

R. E. Vest, L. R. Canfield, M. L. Furst, R. P. Madden, N. Swanson, “Dual grating monochromator for detector calibration using synchrotron radiation as an absolute source at NIST,” Nucl. Instrum. Methods A 347, 291–294 (1994).
[CrossRef]

Geist, J.

J. Geist, A. M. Robinson, C. R. James, “Numerical modeling of silicon photodiodes for high-accuracy applications. Part III: Interpolating and extrapolating internal quantum-efficiency calibrations,” J. Res. Natl. Inst. Stand. Technol. 96, 481–492 (1991).
[CrossRef]

R. Korde, J. Geist, “Quantum effiency stability of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987).
[CrossRef] [PubMed]

Gentile, T. R.

Gibb, K.

L. P. Boivin, K. Gibb, “Monochromator-based cryogenic radiometry at the NRCC,” Metrologia 32, 565–570 (1995–1996).
[CrossRef]

Goebel, R.

R. Goebel, R. Köhler, R. Pello, “Some effects of low radiant power UV radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995–1996).
[CrossRef]

R. Köhler, R. Goebel, R. Pello, “Report on the international comparison of spectral responsivity of silicon detectors,” Metrologia 32, 463–468 (1995–1996).
[CrossRef]

R. Köhler, R. Goebel, R. Pello, O. Touayar, J. Bastie, “First measurements with the BIPM cryogenic radiometer and comparison with the INM cryogenic radiometer,” Metrologia 32, 551–555 (1995–1996).
[CrossRef]

Graves, R. M.

M. L. Furst, R. M. Graves, L. R. Canfield, R. E. Vest, “Radiometry at the NIST SURF II storage ring facility,” Rev. Sci. Instrum. 66, 2257–2259 (1995).
[CrossRef]

Gudat, W.

U. Flechsig, F. Eggenstein, F. Senf, W. Gudat, R. Klein, H. Rabus, G. Ulm, “A plane grating monochromator for the PTB undulator beamline at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 544–547.

Gullikson, E. M.

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft-x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

Haddad, G. N.

Hardis, J. E.

Hengstberger, F.

F. Hengstberger, “An improved theory of the instrumental corrections for absolute radiometers,” Metrologia 13, 69–78 (1977).
[CrossRef]

Hofer, H.

K. D. Stock, H. Hofer, “PTB primary standard for optical radiant power: transfer-optimized facility in the clean-room centre,” Metrologia 32, 545–549 (1995–1996).
[CrossRef]

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
[CrossRef]

Houston, J. M.

Hoyt, C.

Hoyt, C. C.

James, C. R.

J. Geist, A. M. Robinson, C. R. James, “Numerical modeling of silicon photodiodes for high-accuracy applications. Part III: Interpolating and extrapolating internal quantum-efficiency calibrations,” J. Res. Natl. Inst. Stand. Technol. 96, 481–492 (1991).
[CrossRef]

Jung, H. J.

M. Stock, J. Fischer, R. Friedrich, H. J. Jung, B. Wende, “The double-heatpipe blackbody: a high-accuracy standard source of spectral irradiance for measurements of T-T90,” Metrologia 32, 441–444 (1995–1996).
[CrossRef]

Key, P. G.

J. E. Martin, N. P. Fox, P. G. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
[CrossRef]

Kissel, S.

G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).

Klein, R.

R. Klein, M. Krumrey, H. Rabus, F. Scholze, R. Thornagel, G. Ulm, B. Wende, “PTB Laboratory for Radiometry at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 114–118.

U. Flechsig, F. Eggenstein, F. Senf, W. Gudat, R. Klein, H. Rabus, G. Ulm, “A plane grating monochromator for the PTB undulator beamline at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 544–547.

Kochling, H.

Köhler, R.

R. Goebel, R. Köhler, R. Pello, “Some effects of low radiant power UV radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995–1996).
[CrossRef]

R. Köhler, R. Goebel, R. Pello, O. Touayar, J. Bastie, “First measurements with the BIPM cryogenic radiometer and comparison with the INM cryogenic radiometer,” Metrologia 32, 551–555 (1995–1996).
[CrossRef]

R. Köhler, R. Goebel, R. Pello, “Report on the international comparison of spectral responsivity of silicon detectors,” Metrologia 32, 463–468 (1995–1996).
[CrossRef]

Konovodchenko, V. A.

S. P. Morozova, V. A. Konovodchenko, V. I. Sapritzky, B. E. Lisiansky, P. A. Morozov, U. A. Melenevsky, A. G. Petic, “An absolute cryogenic radiometer for laser calibration and characterization of photodetectors,” Metrologia 32, 557–560 (1995–1996).
[CrossRef]

Korde, R.

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft-x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

R. Korde, J. Geist, “Quantum effiency stability of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987).
[CrossRef] [PubMed]

Kraft, S.

G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).

Kroth, U.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, B. Wende, “First results with the new PTB cryogenic radiometer for the vacuum ultraviolet spectral range,” Metrologia 32, 571–574 (1995–1996).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, “New detector calibration facility for the wavelength range 35–400 nm based on an electrical substitution radiometer,” Rev. Sci. Instrum. 66, 2324–2326 (1995).
[CrossRef]

U. Kroth, N. Saito, E. Tegeler, “Quantum efficiency of a semiconductor photodiode in the VUV determined by comparison with a proportional counter in monochromatized synchrotron radiation,” Appl. Opt. 29, 2659–2661 (1990).
[CrossRef] [PubMed]

Krumrey, M.

D. Fuchs, M. Krumrey, T. Lederer, P. Müller, F. Scholze, G. Ulm, “High precision soft-x-ray reflectometer,” Rev. Sci. Instrum. 66, 2248–2251 (1995).
[CrossRef]

F. Scholze, M. Krumrey, P. Müller, D. Fuchs, “Plane grating monochromator beam line for VUV radiometry,” Rev. Sci. Instrum. 65, 3229–3232 (1994).
[CrossRef]

M. Krumrey, E. Tegeler, “Self-calibration of semiconductor photodiodes in the soft-x-ray region,” Rev. Sci. Instrum. 63, 797–801 (1992).
[CrossRef]

E. Tegeler, M. Krumrey, “Stability of semiconductor photodiodes as VUV detectors,” Nucl. Instrum. Methods A 282, 701–705 (1989).
[CrossRef]

M. Krumrey, E. Tegeler, R. Thornagel, G. Ulm, “Calibration of semiconductor photodiodes as soft-x-ray detectors,” Rev. Sci. Instrum. 60, 2291–2294 (1989).
[CrossRef]

R. Klein, M. Krumrey, H. Rabus, F. Scholze, R. Thornagel, G. Ulm, B. Wende, “PTB Laboratory for Radiometry at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 114–118.

Kuschnerus, P.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Larason, T. C.

T. C. Larason, S. S. Bruce, C. L. Cromer, “The NIST high accuracy scale for absolute spectral response from 406 nm to 920 nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
[CrossRef]

Lau-Främbs, A.

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, B. Wende, “First results with the new PTB cryogenic radiometer for the vacuum ultraviolet spectral range,” Metrologia 32, 571–574 (1995–1996).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, “New detector calibration facility for the wavelength range 35–400 nm based on an electrical substitution radiometer,” Rev. Sci. Instrum. 66, 2324–2326 (1995).
[CrossRef]

A. Lau-Främbs, “Entwicklung der Radiometrie mit Synchrotronstrahlung im Spektralbereich 170 bis 400 nm mit einem Kryoradiometer als Primärnormal und Halbleiter-Photodioden als Transfernormale,” Ph.D. thesis (Technical University Berlin, Berlin, Germany, 1995).

Lederer, T.

D. Fuchs, M. Krumrey, T. Lederer, P. Müller, F. Scholze, G. Ulm, “High precision soft-x-ray reflectometer,” Rev. Sci. Instrum. 66, 2248–2251 (1995).
[CrossRef]

Liedquist, L.

T. Verpula, L. Liedquist, H. Ludvigsen, H. Reyn, J. de Vreede, “Comparison of quantum-efficient silicon photodetectors with a cryogenic absolute radiometer at laser wavelength 543.5 nm,” Metrologia 28, 349–352 (1991).
[CrossRef]

Lisiansky, B. E.

S. P. Morozova, V. A. Konovodchenko, V. I. Sapritzky, B. E. Lisiansky, P. A. Morozov, U. A. Melenevsky, A. G. Petic, “An absolute cryogenic radiometer for laser calibration and characterization of photodetectors,” Metrologia 32, 557–560 (1995–1996).
[CrossRef]

Lorentz, S. R.

S. R. Lorentz, S. C. Ebner, J. H. Walker, R. U. Datla, “NIST low-background infrared spectral calibration facility,” Metrologia 32, 621–624 (1995–1996).
[CrossRef]

Z. M. Zhang, R. U. Datla, S. R. Lorentz, H. C. Tang, “Thermal modeling of absolute cryogenic radiometers,” J. Heat Transfer 116, 993–998 (1994).
[CrossRef]

Ludvigsen, H.

T. Verpula, L. Liedquist, H. Ludvigsen, H. Reyn, J. de Vreede, “Comparison of quantum-efficient silicon photodetectors with a cryogenic absolute radiometer at laser wavelength 543.5 nm,” Metrologia 28, 349–352 (1991).
[CrossRef]

Lyall, H.

A. D. Wilson, H. Lyall, “Design of an UV radiometer,” Appl. Opt. 26, 4530–4546 (1986).
[CrossRef]

Madden, R. P.

R. E. Vest, L. R. Canfield, M. L. Furst, R. P. Madden, N. Swanson, “Dual grating monochromator for detector calibration using synchrotron radiation as an absolute source at NIST,” Nucl. Instrum. Methods A 347, 291–294 (1994).
[CrossRef]

Martin, J. E.

T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991).
[CrossRef]

N. P. Fox, J. E. Martin, “Comparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%,” Appl. Opt. 29, 4686–4693 (1990).
[CrossRef] [PubMed]

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between -40 °C and +100 °C,” Philos. Trans. R. Soc. London A316, 85–189 (1985).
[CrossRef]

J. E. Martin, N. P. Fox, P. G. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
[CrossRef]

J. E. Martin, in Metrology at the Frontiers of Physics and Technology, L. Crovini, T. J. Quinn, eds. (North-Holland, Amsterdam, 1992), pp. 361–404.

N. P. Fox, J. E. Martin, “A further intercomparison of two cryogenic radiometers,” in Optical Radiation Measurements II, J. M. Palmer, ed., Proc. SPIE1109, 227–235 (1989).
[CrossRef]

Melchior, H.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Melenevsky, U. A.

S. P. Morozova, V. A. Konovodchenko, V. I. Sapritzky, B. E. Lisiansky, P. A. Morozov, U. A. Melenevsky, A. G. Petic, “An absolute cryogenic radiometer for laser calibration and characterization of photodetectors,” Metrologia 32, 557–560 (1995–1996).
[CrossRef]

Miller, P.

Miller, P. J.

Morozov, P. A.

S. P. Morozova, V. A. Konovodchenko, V. I. Sapritzky, B. E. Lisiansky, P. A. Morozov, U. A. Melenevsky, A. G. Petic, “An absolute cryogenic radiometer for laser calibration and characterization of photodetectors,” Metrologia 32, 557–560 (1995–1996).
[CrossRef]

Morozova, S. P.

S. P. Morozova, V. A. Konovodchenko, V. I. Sapritzky, B. E. Lisiansky, P. A. Morozov, U. A. Melenevsky, A. G. Petic, “An absolute cryogenic radiometer for laser calibration and characterization of photodetectors,” Metrologia 32, 557–560 (1995–1996).
[CrossRef]

Müller, P.

D. Fuchs, M. Krumrey, T. Lederer, P. Müller, F. Scholze, G. Ulm, “High precision soft-x-ray reflectometer,” Rev. Sci. Instrum. 66, 2248–2251 (1995).
[CrossRef]

F. Scholze, M. Krumrey, P. Müller, D. Fuchs, “Plane grating monochromator beam line for VUV radiometry,” Rev. Sci. Instrum. 65, 3229–3232 (1994).
[CrossRef]

Onuki, H.

T. Saito, H. Onuki, “Detector calibration in the wavelength region 10–100 nm based on windowless rare gas ionisation chamber,” Metrologia 32, 525–529 (1995–1996).
[CrossRef]

T. Saito, H. Onuki, “Detector calibration in the 10–60 nm spectral range at the Electrotechnical Laboratory,” J. Opt. (Paris) 24, 23–30 (1993).
[CrossRef]

Parr, A. C.

Pello, R.

R. Köhler, R. Goebel, R. Pello, O. Touayar, J. Bastie, “First measurements with the BIPM cryogenic radiometer and comparison with the INM cryogenic radiometer,” Metrologia 32, 551–555 (1995–1996).
[CrossRef]

R. Köhler, R. Goebel, R. Pello, “Report on the international comparison of spectral responsivity of silicon detectors,” Metrologia 32, 463–468 (1995–1996).
[CrossRef]

R. Goebel, R. Köhler, R. Pello, “Some effects of low radiant power UV radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995–1996).
[CrossRef]

Persch, V.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Petersen, H.

H. Petersen, “The plane grating and elliptical mirror: a new optical configuration for monochromators,” Opt. Commun. 40, 402–406 (1982).
[CrossRef]

Petic, A. G.

S. P. Morozova, V. A. Konovodchenko, V. I. Sapritzky, B. E. Lisiansky, P. A. Morozov, U. A. Melenevsky, A. G. Petic, “An absolute cryogenic radiometer for laser calibration and characterization of photodetectors,” Metrologia 32, 557–560 (1995–1996).
[CrossRef]

Prigozhin, G.

G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).

Quinn, T. J.

T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991).
[CrossRef]

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between -40 °C and +100 °C,” Philos. Trans. R. Soc. London A316, 85–189 (1985).
[CrossRef]

Rabus, H.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron-hole pair creation energy in crystalline silicon for photons in the 50 eV to 1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

H. Rabus, F. Scholze, R. Thornagel, G. Ulm, “Detector calibration at the PTB radiometry laboratory at BESSY,” Nucl. Instrum. Methods A 377, 209–216 (1996).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, B. Wende, “First results with the new PTB cryogenic radiometer for the vacuum ultraviolet spectral range,” Metrologia 32, 571–574 (1995–1996).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, “New detector calibration facility for the wavelength range 35–400 nm based on an electrical substitution radiometer,” Rev. Sci. Instrum. 66, 2324–2326 (1995).
[CrossRef]

U. Flechsig, F. Eggenstein, F. Senf, W. Gudat, R. Klein, H. Rabus, G. Ulm, “A plane grating monochromator for the PTB undulator beamline at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 544–547.

F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self-calibration in the soft-x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).

R. Klein, M. Krumrey, H. Rabus, F. Scholze, R. Thornagel, G. Ulm, B. Wende, “PTB Laboratory for Radiometry at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 114–118.

Razeghi, M.

M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433–7473 (1996).
[CrossRef]

Reyn, H.

O. Touayar, H. Reyn, J. Bastie, T. Varpula, “Indirect comparison of cryogenic radiometers from the INM (France) and the VTT (Finland) with a QED-200 from the VSL (Netherlands),” Metrologia 32, 561–564 (1995–1996).
[CrossRef]

T. Verpula, L. Liedquist, H. Ludvigsen, H. Reyn, J. de Vreede, “Comparison of quantum-efficient silicon photodetectors with a cryogenic absolute radiometer at laser wavelength 543.5 nm,” Metrologia 28, 349–352 (1991).
[CrossRef]

Richter, M.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Ricker, G.

G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).

Robinson, A. M.

J. Geist, A. M. Robinson, C. R. James, “Numerical modeling of silicon photodiodes for high-accuracy applications. Part III: Interpolating and extrapolating internal quantum-efficiency calibrations,” J. Res. Natl. Inst. Stand. Technol. 96, 481–492 (1991).
[CrossRef]

Rogalski, A.

M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433–7473 (1996).
[CrossRef]

Saari, J.-M.

T. Verpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
[CrossRef]

Saito, N.

Saito, T.

T. Saito, H. Onuki, “Detector calibration in the wavelength region 10–100 nm based on windowless rare gas ionisation chamber,” Metrologia 32, 525–529 (1995–1996).
[CrossRef]

T. Saito, H. Onuki, “Detector calibration in the 10–60 nm spectral range at the Electrotechnical Laboratory,” J. Opt. (Paris) 24, 23–30 (1993).
[CrossRef]

Samson, J. A. R.

Sapritzky, V. I.

S. P. Morozova, V. A. Konovodchenko, V. I. Sapritzky, B. E. Lisiansky, P. A. Morozov, U. A. Melenevsky, A. G. Petic, “An absolute cryogenic radiometer for laser calibration and characterization of photodetectors,” Metrologia 32, 557–560 (1995–1996).
[CrossRef]

Scholze, F.

G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).

H. Rabus, F. Scholze, R. Thornagel, G. Ulm, “Detector calibration at the PTB radiometry laboratory at BESSY,” Nucl. Instrum. Methods A 377, 209–216 (1996).
[CrossRef]

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron-hole pair creation energy in crystalline silicon for photons in the 50 eV to 1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

D. Fuchs, M. Krumrey, T. Lederer, P. Müller, F. Scholze, G. Ulm, “High precision soft-x-ray reflectometer,” Rev. Sci. Instrum. 66, 2248–2251 (1995).
[CrossRef]

F. Scholze, G. Ulm, “Characterization of a windowless Si(Li) detector in the photon energy range 0.1–5 keV,” Nucl. Instrum. Methods A 339, 49–54 (1994).
[CrossRef]

F. Scholze, M. Krumrey, P. Müller, D. Fuchs, “Plane grating monochromator beam line for VUV radiometry,” Rev. Sci. Instrum. 65, 3229–3232 (1994).
[CrossRef]

R. Klein, M. Krumrey, H. Rabus, F. Scholze, R. Thornagel, G. Ulm, B. Wende, “PTB Laboratory for Radiometry at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 114–118.

F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self-calibration in the soft-x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).

Senf, F.

U. Flechsig, F. Eggenstein, F. Senf, W. Gudat, R. Klein, H. Rabus, G. Ulm, “A plane grating monochromator for the PTB undulator beamline at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 544–547.

Seppä, H.

T. Verpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
[CrossRef]

Solt, K.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

Stock, K.

Stock, K. D.

K. D. Stock, H. Hofer, “PTB primary standard for optical radiant power: transfer-optimized facility in the clean-room centre,” Metrologia 32, 545–549 (1995–1996).
[CrossRef]

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
[CrossRef]

Stock, M.

M. Stock, J. Fischer, R. Friedrich, H. J. Jung, B. Wende, “The double-heatpipe blackbody: a high-accuracy standard source of spectral irradiance for measurements of T-T90,” Metrologia 32, 441–444 (1995–1996).
[CrossRef]

Swanson, N.

R. E. Vest, L. R. Canfield, M. L. Furst, R. P. Madden, N. Swanson, “Dual grating monochromator for detector calibration using synchrotron radiation as an absolute source at NIST,” Nucl. Instrum. Methods A 347, 291–294 (1994).
[CrossRef]

L. R. Canfield, N. Swanson, “Far ultraviolet detector standards,” J. Res. Natl. Bur. Stand. 92, 97–112 (1987).
[CrossRef]

Tang, H. C.

Z. M. Zhang, R. U. Datla, S. R. Lorentz, H. C. Tang, “Thermal modeling of absolute cryogenic radiometers,” J. Heat Transfer 116, 993–998 (1994).
[CrossRef]

Tegeler, E.

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, B. Wende, “First results with the new PTB cryogenic radiometer for the vacuum ultraviolet spectral range,” Metrologia 32, 571–574 (1995–1996).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, “New detector calibration facility for the wavelength range 35–400 nm based on an electrical substitution radiometer,” Rev. Sci. Instrum. 66, 2324–2326 (1995).
[CrossRef]

N. Ahr, E. Tegeler, “Electrically calibrated cryogenic bolometers as primary detectors in the soft-x-ray region,” Nucl. Instrum. Methods A 319, 387–392 (1992).
[CrossRef]

M. Krumrey, E. Tegeler, “Self-calibration of semiconductor photodiodes in the soft-x-ray region,” Rev. Sci. Instrum. 63, 797–801 (1992).
[CrossRef]

U. Kroth, N. Saito, E. Tegeler, “Quantum efficiency of a semiconductor photodiode in the VUV determined by comparison with a proportional counter in monochromatized synchrotron radiation,” Appl. Opt. 29, 2659–2661 (1990).
[CrossRef] [PubMed]

M. Krumrey, E. Tegeler, R. Thornagel, G. Ulm, “Calibration of semiconductor photodiodes as soft-x-ray detectors,” Rev. Sci. Instrum. 60, 2291–2294 (1989).
[CrossRef]

E. Tegeler, M. Krumrey, “Stability of semiconductor photodiodes as VUV detectors,” Nucl. Instrum. Methods A 282, 701–705 (1989).
[CrossRef]

Thornagel, R.

H. Rabus, F. Scholze, R. Thornagel, G. Ulm, “Detector calibration at the PTB radiometry laboratory at BESSY,” Nucl. Instrum. Methods A 377, 209–216 (1996).
[CrossRef]

M. Krumrey, E. Tegeler, R. Thornagel, G. Ulm, “Calibration of semiconductor photodiodes as soft-x-ray detectors,” Rev. Sci. Instrum. 60, 2291–2294 (1989).
[CrossRef]

R. Klein, M. Krumrey, H. Rabus, F. Scholze, R. Thornagel, G. Ulm, B. Wende, “PTB Laboratory for Radiometry at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 114–118.

Touayar, O.

R. Köhler, R. Goebel, R. Pello, O. Touayar, J. Bastie, “First measurements with the BIPM cryogenic radiometer and comparison with the INM cryogenic radiometer,” Metrologia 32, 551–555 (1995–1996).
[CrossRef]

O. Touayar, H. Reyn, J. Bastie, T. Varpula, “Indirect comparison of cryogenic radiometers from the INM (France) and the VTT (Finland) with a QED-200 from the VSL (Netherlands),” Metrologia 32, 561–564 (1995–1996).
[CrossRef]

Ulm, G.

G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).

H. Rabus, F. Scholze, R. Thornagel, G. Ulm, “Detector calibration at the PTB radiometry laboratory at BESSY,” Nucl. Instrum. Methods A 377, 209–216 (1996).
[CrossRef]

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron-hole pair creation energy in crystalline silicon for photons in the 50 eV to 1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, B. Wende, “First results with the new PTB cryogenic radiometer for the vacuum ultraviolet spectral range,” Metrologia 32, 571–574 (1995–1996).
[CrossRef]

G. Ulm, B. Wende, “The radiometry laboratory of PTB at BESSY,” Rev. Sci. Instrum. 66, 2244–2247 (1995).
[CrossRef]

D. Fuchs, M. Krumrey, T. Lederer, P. Müller, F. Scholze, G. Ulm, “High precision soft-x-ray reflectometer,” Rev. Sci. Instrum. 66, 2248–2251 (1995).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, “New detector calibration facility for the wavelength range 35–400 nm based on an electrical substitution radiometer,” Rev. Sci. Instrum. 66, 2324–2326 (1995).
[CrossRef]

F. Scholze, G. Ulm, “Characterization of a windowless Si(Li) detector in the photon energy range 0.1–5 keV,” Nucl. Instrum. Methods A 339, 49–54 (1994).
[CrossRef]

D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992).
[CrossRef]

M. Krumrey, E. Tegeler, R. Thornagel, G. Ulm, “Calibration of semiconductor photodiodes as soft-x-ray detectors,” Rev. Sci. Instrum. 60, 2291–2294 (1989).
[CrossRef]

R. Klein, M. Krumrey, H. Rabus, F. Scholze, R. Thornagel, G. Ulm, B. Wende, “PTB Laboratory for Radiometry at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 114–118.

U. Flechsig, F. Eggenstein, F. Senf, W. Gudat, R. Klein, H. Rabus, G. Ulm, “A plane grating monochromator for the PTB undulator beamline at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 544–547.

F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self-calibration in the soft-x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).

Varpula, T.

O. Touayar, H. Reyn, J. Bastie, T. Varpula, “Indirect comparison of cryogenic radiometers from the INM (France) and the VTT (Finland) with a QED-200 from the VSL (Netherlands),” Metrologia 32, 561–564 (1995–1996).
[CrossRef]

Verpula, T.

T. Verpula, L. Liedquist, H. Ludvigsen, H. Reyn, J. de Vreede, “Comparison of quantum-efficient silicon photodetectors with a cryogenic absolute radiometer at laser wavelength 543.5 nm,” Metrologia 28, 349–352 (1991).
[CrossRef]

T. Verpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
[CrossRef]

Vest, R. E.

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft-x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

M. L. Furst, R. M. Graves, L. R. Canfield, R. E. Vest, “Radiometry at the NIST SURF II storage ring facility,” Rev. Sci. Instrum. 66, 2257–2259 (1995).
[CrossRef]

R. E. Vest, L. R. Canfield, M. L. Furst, R. P. Madden, N. Swanson, “Dual grating monochromator for detector calibration using synchrotron radiation as an absolute source at NIST,” Nucl. Instrum. Methods A 347, 291–294 (1994).
[CrossRef]

R. E. Vest, L. R. Canfield, “Evaluation of Au/GaAsP and Au/GaP Schottky photodiodes as radiometric detectors in the EUV,” in Proceedings of the Synchrotron Radiation Instrumentation Conference (SRI) 1995, Rev. Sci. Instrum. (special issue)67(9) CD-ROM (1996).

Walker, J. H.

S. R. Lorentz, S. C. Ebner, J. H. Walker, R. U. Datla, “NIST low-background infrared spectral calibration facility,” Metrologia 32, 621–624 (1995–1996).
[CrossRef]

Wende, B.

M. Stock, J. Fischer, R. Friedrich, H. J. Jung, B. Wende, “The double-heatpipe blackbody: a high-accuracy standard source of spectral irradiance for measurements of T-T90,” Metrologia 32, 441–444 (1995–1996).
[CrossRef]

B. Wende, “Radiometry with synchrotron radiation,” Metrologia 32, 419–424 (1995–1996).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, B. Wende, “First results with the new PTB cryogenic radiometer for the vacuum ultraviolet spectral range,” Metrologia 32, 571–574 (1995–1996).
[CrossRef]

G. Ulm, B. Wende, “The radiometry laboratory of PTB at BESSY,” Rev. Sci. Instrum. 66, 2244–2247 (1995).
[CrossRef]

R. Klein, M. Krumrey, H. Rabus, F. Scholze, R. Thornagel, G. Ulm, B. Wende, “PTB Laboratory for Radiometry at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 114–118.

White, M. G.

M. G. White, A. Bittar, “Uniformity and quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361–364 (1993).
[CrossRef]

Wilson, A. D.

A. D. Wilson, H. Lyall, “Design of an UV radiometer,” Appl. Opt. 26, 4530–4546 (1986).
[CrossRef]

Zalewski, E. F.

Zhang, Z. M.

Z. M. Zhang, R. U. Datla, S. R. Lorentz, H. C. Tang, “Thermal modeling of absolute cryogenic radiometers,” J. Heat Transfer 116, 993–998 (1994).
[CrossRef]

Appl. Opt.

A. D. Wilson, H. Lyall, “Design of an UV radiometer,” Appl. Opt. 26, 4530–4546 (1986).
[CrossRef]

W. Budde, “Definition of the linearity range of Si photodiodes,” Appl. Opt. 22, 1780–1784 (1983).
[CrossRef] [PubMed]

E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
[CrossRef] [PubMed]

L. R. Canfield, “New far UV detector calibration facility at the National Bureau of Standards,” Appl. Opt. 26, 3831–3837 (1987).
[CrossRef] [PubMed]

R. Korde, J. Geist, “Quantum effiency stability of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987).
[CrossRef] [PubMed]

U. Kroth, N. Saito, E. Tegeler, “Quantum efficiency of a semiconductor photodiode in the VUV determined by comparison with a proportional counter in monochromatized synchrotron radiation,” Appl. Opt. 29, 2659–2661 (1990).
[CrossRef] [PubMed]

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers,” Appl. Opt. 29, 988–993 (1990).
[CrossRef] [PubMed]

N. P. Fox, J. E. Martin, “Comparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%,” Appl. Opt. 29, 4686–4693 (1990).
[CrossRef] [PubMed]

J. Fischer, L. Fu, “Photodiode nonlinearity measurement with an intensity stabilized laser as a radiation source,” Appl. Opt. 32, 4187–4190 (1993).
[CrossRef] [PubMed]

T. R. Gentile, J. M. Houston, J. E. Hardis, C. L. Cromer, A. C. Parr, “National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 1056–1068 (1996).
[CrossRef] [PubMed]

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
[CrossRef] [PubMed]

R. U. Datla, K. Stock, A. C. Parr, C. C. Hoyt, P. J. Miller, P. V. Foukal, “Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurement,” Appl. Opt. 31, 7219–7225 (1992).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
[CrossRef]

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron-hole pair creation energy in crystalline silicon for photons in the 50 eV to 1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

IEEE Trans. Instrum. Meas.

T. Verpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
[CrossRef]

IEEE Trans. Nucl. Meas.

G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).

IEEE Trans. Nucl. Sci.

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

J. Appl. Phys.

M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433–7473 (1996).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom.

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft-x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

J. Heat Transfer

Z. M. Zhang, R. U. Datla, S. R. Lorentz, H. C. Tang, “Thermal modeling of absolute cryogenic radiometers,” J. Heat Transfer 116, 993–998 (1994).
[CrossRef]

J. Opt. (Paris)

T. Saito, H. Onuki, “Detector calibration in the 10–60 nm spectral range at the Electrotechnical Laboratory,” J. Opt. (Paris) 24, 23–30 (1993).
[CrossRef]

J. Opt. Soc. Am.

J. Res. Natl. Bur. Stand.

L. R. Canfield, N. Swanson, “Far ultraviolet detector standards,” J. Res. Natl. Bur. Stand. 92, 97–112 (1987).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol.

T. C. Larason, S. S. Bruce, C. L. Cromer, “The NIST high accuracy scale for absolute spectral response from 406 nm to 920 nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
[CrossRef]

J. Geist, A. M. Robinson, C. R. James, “Numerical modeling of silicon photodiodes for high-accuracy applications. Part III: Interpolating and extrapolating internal quantum-efficiency calibrations,” J. Res. Natl. Inst. Stand. Technol. 96, 481–492 (1991).
[CrossRef]

Metrologia

N. M. Durant, N. P. Fox, “A physical basis for the extrapolation of silicon photodiode efficiency into the ultraviolet,” Metrologia 30, 345–350 (1993).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, B. Wende, “First results with the new PTB cryogenic radiometer for the vacuum ultraviolet spectral range,” Metrologia 32, 571–574 (1995–1996).
[CrossRef]

J. E. Martin, N. P. Fox, P. G. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
[CrossRef]

T. Verpula, L. Liedquist, H. Ludvigsen, H. Reyn, J. de Vreede, “Comparison of quantum-efficient silicon photodetectors with a cryogenic absolute radiometer at laser wavelength 543.5 nm,” Metrologia 28, 349–352 (1991).
[CrossRef]

R. Köhler, R. Goebel, R. Pello, O. Touayar, J. Bastie, “First measurements with the BIPM cryogenic radiometer and comparison with the INM cryogenic radiometer,” Metrologia 32, 551–555 (1995–1996).
[CrossRef]

O. Touayar, H. Reyn, J. Bastie, T. Varpula, “Indirect comparison of cryogenic radiometers from the INM (France) and the VTT (Finland) with a QED-200 from the VSL (Netherlands),” Metrologia 32, 561–564 (1995–1996).
[CrossRef]

S. P. Morozova, V. A. Konovodchenko, V. I. Sapritzky, B. E. Lisiansky, P. A. Morozov, U. A. Melenevsky, A. G. Petic, “An absolute cryogenic radiometer for laser calibration and characterization of photodetectors,” Metrologia 32, 557–560 (1995–1996).
[CrossRef]

K. D. Stock, H. Hofer, “PTB primary standard for optical radiant power: transfer-optimized facility in the clean-room centre,” Metrologia 32, 545–549 (1995–1996).
[CrossRef]

M. G. White, A. Bittar, “Uniformity and quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361–364 (1993).
[CrossRef]

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

M. Stock, J. Fischer, R. Friedrich, H. J. Jung, B. Wende, “The double-heatpipe blackbody: a high-accuracy standard source of spectral irradiance for measurements of T-T90,” Metrologia 32, 441–444 (1995–1996).
[CrossRef]

L. Fu, J. Fischer, “Characterization of photodiodes in the visible spectral range based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
[CrossRef]

L. P. Boivin, K. Gibb, “Monochromator-based cryogenic radiometry at the NRCC,” Metrologia 32, 565–570 (1995–1996).
[CrossRef]

N. P. Fox, “Radiometry with cryogenic radiometers and semiconductor photodiodes,” Metrologia 32, 535–543 (1995–1996).
[CrossRef]

T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991).
[CrossRef]

B. Wende, “Radiometry with synchrotron radiation,” Metrologia 32, 419–424 (1995–1996).
[CrossRef]

S. R. Lorentz, S. C. Ebner, J. H. Walker, R. U. Datla, “NIST low-background infrared spectral calibration facility,” Metrologia 32, 621–624 (1995–1996).
[CrossRef]

F. Hengstberger, “An improved theory of the instrumental corrections for absolute radiometers,” Metrologia 13, 69–78 (1977).
[CrossRef]

T. Saito, H. Onuki, “Detector calibration in the wavelength region 10–100 nm based on windowless rare gas ionisation chamber,” Metrologia 32, 525–529 (1995–1996).
[CrossRef]

R. Köhler, R. Goebel, R. Pello, “Report on the international comparison of spectral responsivity of silicon detectors,” Metrologia 32, 463–468 (1995–1996).
[CrossRef]

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
[CrossRef]

N. M. Durant, N. Fox, “Evaluation of solid-state detectors for radiometric applications,” Metrologia 32, 505–508 (1995–1996).
[CrossRef]

R. Goebel, R. Köhler, R. Pello, “Some effects of low radiant power UV radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995–1996).
[CrossRef]

Nucl. Instrum. Methods A

E. Tegeler, M. Krumrey, “Stability of semiconductor photodiodes as VUV detectors,” Nucl. Instrum. Methods A 282, 701–705 (1989).
[CrossRef]

F. Scholze, G. Ulm, “Characterization of a windowless Si(Li) detector in the photon energy range 0.1–5 keV,” Nucl. Instrum. Methods A 339, 49–54 (1994).
[CrossRef]

N. Ahr, E. Tegeler, “Electrically calibrated cryogenic bolometers as primary detectors in the soft-x-ray region,” Nucl. Instrum. Methods A 319, 387–392 (1992).
[CrossRef]

R. E. Vest, L. R. Canfield, M. L. Furst, R. P. Madden, N. Swanson, “Dual grating monochromator for detector calibration using synchrotron radiation as an absolute source at NIST,” Nucl. Instrum. Methods A 347, 291–294 (1994).
[CrossRef]

H. Rabus, F. Scholze, R. Thornagel, G. Ulm, “Detector calibration at the PTB radiometry laboratory at BESSY,” Nucl. Instrum. Methods A 377, 209–216 (1996).
[CrossRef]

Opt. Commun.

H. Petersen, “The plane grating and elliptical mirror: a new optical configuration for monochromators,” Opt. Commun. 40, 402–406 (1982).
[CrossRef]

Philos. Trans. R. Soc. London

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between -40 °C and +100 °C,” Philos. Trans. R. Soc. London A316, 85–189 (1985).
[CrossRef]

Physica

J. C. de Vos, “Evaluation of the quality of a blackbody,” Physica 20, 669–689 (1954).
[CrossRef]

Rev. Sci. Instrum.

D. Fuchs, M. Krumrey, T. Lederer, P. Müller, F. Scholze, G. Ulm, “High precision soft-x-ray reflectometer,” Rev. Sci. Instrum. 66, 2248–2251 (1995).
[CrossRef]

M. Krumrey, E. Tegeler, R. Thornagel, G. Ulm, “Calibration of semiconductor photodiodes as soft-x-ray detectors,” Rev. Sci. Instrum. 60, 2291–2294 (1989).
[CrossRef]

D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992).
[CrossRef]

M. L. Furst, R. M. Graves, L. R. Canfield, R. E. Vest, “Radiometry at the NIST SURF II storage ring facility,” Rev. Sci. Instrum. 66, 2257–2259 (1995).
[CrossRef]

F. Scholze, M. Krumrey, P. Müller, D. Fuchs, “Plane grating monochromator beam line for VUV radiometry,” Rev. Sci. Instrum. 65, 3229–3232 (1994).
[CrossRef]

A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, “New detector calibration facility for the wavelength range 35–400 nm based on an electrical substitution radiometer,” Rev. Sci. Instrum. 66, 2324–2326 (1995).
[CrossRef]

G. Ulm, B. Wende, “The radiometry laboratory of PTB at BESSY,” Rev. Sci. Instrum. 66, 2244–2247 (1995).
[CrossRef]

M. Krumrey, E. Tegeler, “Self-calibration of semiconductor photodiodes in the soft-x-ray region,” Rev. Sci. Instrum. 63, 797–801 (1992).
[CrossRef]

Other

L. Fu, “Aufbau einer Skala für spektrale Strahlungsleistung im Spektralbereich 250 nm bis 800 nm mit einem Kryoradiometer als Primärnormal und Photodioden als Transfernormalen,” Ph.D. thesis (Technical University Berlin, Berlin, Germany, 1993).

Both gratings: blank material: Zerodur, coating: gold, manufacturer: Zeiss, Oberkochem, Germany; grating 1: original ruled, 366 grooves/mm, blaze angle: 3.9°; grating 2: ion etched holographic, 1221 grooves/mm, blaze angle: 1.4°.

R. E. Vest, L. R. Canfield, “Evaluation of Au/GaAsP and Au/GaP Schottky photodiodes as radiometric detectors in the EUV,” in Proceedings of the Synchrotron Radiation Instrumentation Conference (SRI) 1995, Rev. Sci. Instrum. (special issue)67(9) CD-ROM (1996).

A. Lau-Främbs, “Entwicklung der Radiometrie mit Synchrotronstrahlung im Spektralbereich 170 bis 400 nm mit einem Kryoradiometer als Primärnormal und Halbleiter-Photodioden als Transfernormale,” Ph.D. thesis (Technical University Berlin, Berlin, Germany, 1995).

F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self-calibration in the soft-x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).

R. Klein, M. Krumrey, H. Rabus, F. Scholze, R. Thornagel, G. Ulm, B. Wende, “PTB Laboratory for Radiometry at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 114–118.

U. Flechsig, F. Eggenstein, F. Senf, W. Gudat, R. Klein, H. Rabus, G. Ulm, “A plane grating monochromator for the PTB undulator beamline at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 544–547.

F. Hengstberger, ed., Absolute Radiometry: Electrical Calibrated Thermal Detectors of Optical Radiation (Academic, Boston, 1989), Chaps. 1, 3.

J. E. Martin, in Metrology at the Frontiers of Physics and Technology, L. Crovini, T. J. Quinn, eds. (North-Holland, Amsterdam, 1992), pp. 361–404.

N. P. Fox, J. E. Martin, “A further intercomparison of two cryogenic radiometers,” in Optical Radiation Measurements II, J. M. Palmer, ed., Proc. SPIE1109, 227–235 (1989).
[CrossRef]

Reference to commercial products is provided in the text to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the Physikalisch-Technische Bundesanstalt, nor does it imply that the products are necessarily the best available for the purpose.

Guide to the Expression of Uncertainty in Measurement [International Organization for Standardization, (ISO), Geneva, Switzerland, 1993].

Ion etched holographic grating, 600 grooves/mm, blank material: quartz, coating: aluminum with a MgF2 protective coating, manufacturer: Hyperfine Inc., Boulder, Colo.

Ion etched holographic grating, 1200 grooves/mm, blaze wavelength: 60 nm, blank material: quartz, coating: silicon carbide, manufacturer: Hyperfine Inc., Boulder, Colo.

Ion etched holographic grating, 2400 grooves/mm, blank material: quartz, coating: iridium–osmium, manufacturer: Hyperfine Inc., Boulder, Colo.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Electrical substitution radiometer: T ref, heat-sink reference temperature; R, thermal resistance; λ, wavelength; Φ, radiant power; T abs, absorber temperature; C, absorber heat capacity; P el, electrical heater power.

Fig. 2
Fig. 2

Schematic cross-sectional view of the SYRES cryogenic radiometer (right) and the interface to the synchrotron radiation beam line (left). The drawing refers to the interface to the UV–VUV beam line, which contains a set of cooled aperture stops that are mounted inside copper tubes, which in turn are linked to liquid-nitrogen dewars. The incoming (convergent) synchrotron radiation beam is not limited by any of the apertures. The overall length of the interface thermal radiation shield is ∼1.8 m. The vacuum case of the radiometer is 750 mm high and has a diameter of 360 mm. The radial extension to the left protrudes 350 mm from the main vacuum vessel.

Fig. 3
Fig. 3

Measured parameters of the SYRES absorber cavity as a function of absorber temperature: top, absorber thermal responsivity and thermal resistance of the heat link between absorber and heat sink; bottom, thermal time constant and absorber heat capacity. The heat-sink temperature was set to 4.35 K.

Fig. 4
Fig. 4

Schematic drawing of the SYRES electronic circuits: R std, external standard resistor for current measurement; R htr, thin-film heater mounted to absorber; R ts and R ts′, germanium resistance temperature sensors attached to absorber and heat sink, respectively; R htr′, heat-sink resistive heater; U std and U htr, voltmeters for measurement of heater current and voltage; U ts, nanovoltmeter for measurement of absorber temperature-sensor resistance; U ts′, voltmeter for measurement of heat-sink temperature-sensor resistance; I htr, programmable dc source for heater current; I ts, dc constant current source for temperature sensor excitation; I htr′, dc current source for heat-sink heater; PC, personal computer for experiment control; ITC, Oxford Instruments Intelligent Temperature Controller, Model 503 (incorporates voltmeter U ts′ and current source I htr′). Both the heat-sink and the absorber temperature are kept constant at set values by the ITC and the PC, respectively, employing two-term (proportional–integral) control algorithms for the feedback from temperature-sensor signal (U ts′ and U ts) to current–source output (I htr′ and I htr).

Fig. 5
Fig. 5

Stability of the SYRES heat-sink and absorber temperatures with time. The rms deviations of the respective temperatures from their set values typically are in the range 50–100 µK for the heat sink and in the range 10–20 µK in the case of the absorber. In the example shown, the standard deviations amount to 63 and 13 µK, respectively.

Fig. 6
Fig. 6

Sample radiant-power measurement with the SYRES in dynamic-control mode, absorber temperature T abs (top) and electrical heater power P el (bottom) as a function of time. In the time interval from 90–270 s, where the data points are marked by circles, the absorber is exposed to synchrotron radiation. In the ranges where the data points are represented by filled symbols, the standard deviation of the absorber temperature T abs from the set control temperature T ctrl = 5.6 K is below 20 µK.

Fig. 7
Fig. 7

Top, radiant power versus time extracted from the measurement shown in Fig. 6, taking the difference between the dotted–dashed line and the power data points in the lower part of Fig. 6; bottom, after normalization to the photon-flux monitor signal, in this case to the beam-current monitor that measures the stored electron current, the time dependence is removed. We obtain the value of the ratio of radiant power to monitor signal by averaging over the data points marked by filled circles.

Fig. 8
Fig. 8

Schematic top view of the UV–VUV detector calibration facility. The entire beam path including all optical elements and detectors is inside a set of connected ultrahigh-vacuum cases that are not shown. For the sake of lucidity, the first section of the beam line from the storage ring to the condenser mirror is shown ∼20° rotated around the center of the condensor mirror. In reality, the incoming synchrotron radiation beam passes below the grating monochromator, and the condensor mirror deflects the radiation vertically. The distances from the condensor mirror to the radiation source point and the monochromator entrance slit (S1) are 13.5 m and 4.5 m, respectively. The monochromator entrance and exit arms are 1 m in length each, and the separation from the focusing mirror to the exit slit (S2) and to the image point is 2 m and 3 m, respectively. The wedge-shaped item at the downstream end of the beam line represents a pivoting platform that bears up to three detector stations. The positions of the platform, in which the various detectors are placed at the beam-line focus, are defined by retracted centering cones in the laboratory floor and are reproducible within ±0.1 mm (Ref. 30).

Fig. 9
Fig. 9

Profile of the irradiance at the focal point of the UV–VUV detector calibration facility as measured at wavelength 355 nm for a monochromator exit slit width of 2 mm.

Fig. 10
Fig. 10

Radiant power at the UV–VUV detector calibration facility for an electron current of 500 mA in the storage ring. The values apply to the low-resolution settings of the monochromator entrance and exit slits that are used for detector calibration measurements. The coatings of the condensor mirrors and gratings used in the various spectral ranges are denoted at the top; the filters that are used to suppress higher diffraction orders of the monochromator grating are specified in the lower right corner.

Fig. 11
Fig. 11

Ratio of the radiant power at the UV–VUV detector calibration facility at wavelengths 170.0 nm and 257.3 nm, respectively, and the signal of the reference monitor detector for repeated measurements on different days. The difference in time between two subsequent measurements on the same day is ∼30 min. The dotted lines indicate a band of ±0.2% of the mean value of the respective data set.

Fig. 12
Fig. 12

Schematic side view of the soft-x-ray detector calibration facility.29 The monochromator makes use of the source point of the synchrotron radiation as entrance slit. The wavelength is tuned by simultaneous rotation of the plane mirror (M1) and the plane grating (G). The distances from the source point of the synchrotron radiation to the ellipsoidal focusing mirror (M2) and from the mirror to the exit slit (S) are 15.65 m and 1.5 m, respectively. The toroidal refocusing mirror is situated 0.35 m behind the exit slit and forms an image of the exit slit on the detectors at a distance of 3 m. Unlike the UV–VUV beam line, the diameters of the cooled apertures inside the beam-line interface are not monotonically convergent, but one of the central apertures, 4 mm in diameter, defines the incoming synchrotron radiation beam. A manipulator system permits small-size detectors like photodiodes to be positioned behind this beam-limiting aperture inside the baffle system.

Fig. 13
Fig. 13

Radiant power at the soft-x-ray detector calibration facility for an electron current of 500 mA in the storage ring. The values apply to the use of the 1221-grooves/mm grating and the 200-µm exit slit. The filters used to suppress the higher diffraction orders of the monochromator grating are listed at the lower right corner.

Fig. 14
Fig. 14

Ratio of the radiant power at the focal point of the soft-x-ray detector calibration facility and the beam current in the storage ring as a function of the beam current. The measurements were performed at the 8.85-nm wavelength during two subsequent injection intervals of the storage ring, represented by open and filled circles, respectively. The dotted lines indicate the standard deviation of the data points that amounts to 0.07% of the mean value.

Fig. 15
Fig. 15

Spectral responsivity of three types of photodiode as determined with the SYRES at the UV–VUV and the soft-x-ray detector calibration facilities, respectively: asterisks, diffusion-type silicon p on n (Hamamatsu S1337-10); triangles, Schottky-type PtSi-n-Si; diamonds, diffusion-type silicon n on p (International Radiation Detectors AXUV-100G). The enlarged vertical scale on the left-hand side refers to the last case.

Fig. 16
Fig. 16

Spectral responsivity of a silicon p on n photodiode (Hamamatsu S1337) at 257.3-nm wavelength. The solid lines mark the average over all measurements, and the dotted lines indicate the standard deviation, which amounts to 0.35% of the mean value.

Tables (3)

Tables Icon

Table 1 Contributions to Standard Relative Uncertainty of Radiant Power Φa

Tables Icon

Table 2 Contributions to Standard Relative Uncertainty of Spectral Responsivity s of Qualified Semiconductor Photodiodesa

Tables Icon

Table 3 Comparison of Spectral Responsivity of Two Photodiodesa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Tabs-Tref=R·P.
Tabst=Tabsto+ΔTabs1-expt-toτ,
τ=R·C   ΔTabs=s·ΔP,
1R=1Tabs-TrefTrefTabs1sTdT.
Pel=Uhtr·UstdRstd,
Ihtr=I0+G·Tctrl-Tabs+G·2τintotTctrl-Tabsdt.
G=ImaxΔTprop.
f=0.2 nWGnA/μKPhtrμW1/2,

Metrics