Abstract

The popular sheet polarizer, Polaroid HN22, has been measured to be a nearly half-wave retarder in the 3.6–5.4-µm spectral band with a transmittance of approximately 20%. Tuning of the retardance value between 60° and 260° has been demonstrated by tilting of the HN22 sheet with respect to the incident beam. The material’s availability, relatively large aperture, large field of view, and low cost make it an excellent candidate for use as an infrared retarder for systems operating in this wave band. Thus HN22 may be employed as an inexpensive half-wave linear retarder and used for rotating the plane of polarization as well as for conversion between circular polarization states.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Land, “Some aspects of the development of sheet polarizers,” J. Opt. Soc. Am. 41, 957–963 (1951).
    [CrossRef]
  2. E. H. Land, C. D. West, “Dichroism and dichroic polarizers,” Colloid. Chem. 6, 160–190 (1946).
  3. E. Collett, Polarized Light Fundamentals and Applications (Marcel Dekker, New York, 1992), Chap. 5, pp. 67–90; Chap. 23, pp. 468–479.
  4. R. P. Blake, A. S. Makas, C. D. West, “Molecular-type dichroic film polarizers for 0.75 to 2.5 µ-radiations,” J. Opt. Soc. Am. (abstract) 39, 1054 (1949).
  5. W. A. Shurcliff, Polarized Light (Harvard U., Cambridge, Mass., 1962), Chap. 4, pp. 43–64.
  6. Polaroid Corporation, 1 Upland Rd. N2, Norwood, Mass. 02062.
  7. J. L. Pezzaniti, R. A. Chipman, “Linear polarization uniformity measurements taken with an imaging polarimeter,” Opt. Eng. 34, 1558–1567 (1995).
    [CrossRef]
  8. G. Trapani, Polaroid Corporation, Commercial Optics Division, Nor-1 Mezzanine, 1 Upland Rd., Norwood, Mass. 02062 (personal communication).
  9. S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. V. Polyvinyl alcohol,” J. Polym. Sci. 22, 227–247 (1956).
    [CrossRef]
  10. V. K. D. Mielenz, R. C. Jones, “Die Eignung von Polarisationsfiltern fur photometrishe Messungen,” Optik 15, 656–669 (1957).
  11. D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, 3513–3519 (1993).
    [CrossRef] [PubMed]
  12. D. H. Goldstein, “Mueller matrix dual-rotating retarder polar imeter,” Appl. Opt. 31, 6676–6683 (1992).
    [CrossRef] [PubMed]
  13. D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
    [CrossRef]
  14. R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1993), pp. 22.1–22.33.
  15. S-Y. Lu, R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
    [CrossRef]
  16. S. McClain, “Birefringent polarization ray tracing: theory and applications,” Ph.D. dissertation (University of Alabama in Huntsville, Huntsville, Ala., 1992), Chap. 6.
  17. J. Bennet, “Polarizers” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1993), pp. 22.1–22.33.
  18. A. M. Title, W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981).
    [CrossRef]
  19. P. D. Hale, G. W. Day, “Stability of birefringent linear retarders (waveplates),” Appl. Opt. 27, 5146–5153 (1988).
    [CrossRef] [PubMed]

1996 (1)

1995 (1)

J. L. Pezzaniti, R. A. Chipman, “Linear polarization uniformity measurements taken with an imaging polarimeter,” Opt. Eng. 34, 1558–1567 (1995).
[CrossRef]

1993 (1)

1992 (1)

1989 (1)

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
[CrossRef]

1988 (1)

1981 (1)

A. M. Title, W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981).
[CrossRef]

1957 (1)

V. K. D. Mielenz, R. C. Jones, “Die Eignung von Polarisationsfiltern fur photometrishe Messungen,” Optik 15, 656–669 (1957).

1956 (1)

S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. V. Polyvinyl alcohol,” J. Polym. Sci. 22, 227–247 (1956).
[CrossRef]

1951 (1)

1949 (1)

R. P. Blake, A. S. Makas, C. D. West, “Molecular-type dichroic film polarizers for 0.75 to 2.5 µ-radiations,” J. Opt. Soc. Am. (abstract) 39, 1054 (1949).

1946 (1)

E. H. Land, C. D. West, “Dichroism and dichroic polarizers,” Colloid. Chem. 6, 160–190 (1946).

Bennet, J.

J. Bennet, “Polarizers” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1993), pp. 22.1–22.33.

Blake, R. P.

R. P. Blake, A. S. Makas, C. D. West, “Molecular-type dichroic film polarizers for 0.75 to 2.5 µ-radiations,” J. Opt. Soc. Am. (abstract) 39, 1054 (1949).

Chenault, D. B.

Chipman, R. A.

S-Y. Lu, R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
[CrossRef]

J. L. Pezzaniti, R. A. Chipman, “Linear polarization uniformity measurements taken with an imaging polarimeter,” Opt. Eng. 34, 1558–1567 (1995).
[CrossRef]

D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, 3513–3519 (1993).
[CrossRef] [PubMed]

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
[CrossRef]

R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1993), pp. 22.1–22.33.

Collett, E.

E. Collett, Polarized Light Fundamentals and Applications (Marcel Dekker, New York, 1992), Chap. 5, pp. 67–90; Chap. 23, pp. 468–479.

Day, G. W.

Goldstein, D. H.

D. H. Goldstein, “Mueller matrix dual-rotating retarder polar imeter,” Appl. Opt. 31, 6676–6683 (1992).
[CrossRef] [PubMed]

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
[CrossRef]

Hale, P. D.

Jones, R. C.

V. K. D. Mielenz, R. C. Jones, “Die Eignung von Polarisationsfiltern fur photometrishe Messungen,” Optik 15, 656–669 (1957).

Krimm, S.

S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. V. Polyvinyl alcohol,” J. Polym. Sci. 22, 227–247 (1956).
[CrossRef]

Land, E. H.

E. H. Land, “Some aspects of the development of sheet polarizers,” J. Opt. Soc. Am. 41, 957–963 (1951).
[CrossRef]

E. H. Land, C. D. West, “Dichroism and dichroic polarizers,” Colloid. Chem. 6, 160–190 (1946).

Liang, C. Y.

S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. V. Polyvinyl alcohol,” J. Polym. Sci. 22, 227–247 (1956).
[CrossRef]

Lu, S-Y.

Makas, A. S.

R. P. Blake, A. S. Makas, C. D. West, “Molecular-type dichroic film polarizers for 0.75 to 2.5 µ-radiations,” J. Opt. Soc. Am. (abstract) 39, 1054 (1949).

McClain, S.

S. McClain, “Birefringent polarization ray tracing: theory and applications,” Ph.D. dissertation (University of Alabama in Huntsville, Huntsville, Ala., 1992), Chap. 6.

Mielenz, V. K. D.

V. K. D. Mielenz, R. C. Jones, “Die Eignung von Polarisationsfiltern fur photometrishe Messungen,” Optik 15, 656–669 (1957).

Pezzaniti, J. L.

J. L. Pezzaniti, R. A. Chipman, “Linear polarization uniformity measurements taken with an imaging polarimeter,” Opt. Eng. 34, 1558–1567 (1995).
[CrossRef]

Rosenberg, W. J.

A. M. Title, W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981).
[CrossRef]

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light (Harvard U., Cambridge, Mass., 1962), Chap. 4, pp. 43–64.

Sutherland, G. B. B. M.

S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. V. Polyvinyl alcohol,” J. Polym. Sci. 22, 227–247 (1956).
[CrossRef]

Title, A. M.

A. M. Title, W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981).
[CrossRef]

Trapani, G.

G. Trapani, Polaroid Corporation, Commercial Optics Division, Nor-1 Mezzanine, 1 Upland Rd., Norwood, Mass. 02062 (personal communication).

West, C. D.

R. P. Blake, A. S. Makas, C. D. West, “Molecular-type dichroic film polarizers for 0.75 to 2.5 µ-radiations,” J. Opt. Soc. Am. (abstract) 39, 1054 (1949).

E. H. Land, C. D. West, “Dichroism and dichroic polarizers,” Colloid. Chem. 6, 160–190 (1946).

Appl. Opt. (3)

Colloid. Chem. (1)

E. H. Land, C. D. West, “Dichroism and dichroic polarizers,” Colloid. Chem. 6, 160–190 (1946).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. (abstract) (1)

R. P. Blake, A. S. Makas, C. D. West, “Molecular-type dichroic film polarizers for 0.75 to 2.5 µ-radiations,” J. Opt. Soc. Am. (abstract) 39, 1054 (1949).

J. Opt. Soc. Am. A (1)

J. Polym. Sci. (1)

S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of high polymers. V. Polyvinyl alcohol,” J. Polym. Sci. 22, 227–247 (1956).
[CrossRef]

Opt. Eng. (3)

J. L. Pezzaniti, R. A. Chipman, “Linear polarization uniformity measurements taken with an imaging polarimeter,” Opt. Eng. 34, 1558–1567 (1995).
[CrossRef]

A. M. Title, W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981).
[CrossRef]

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
[CrossRef]

Optik (1)

V. K. D. Mielenz, R. C. Jones, “Die Eignung von Polarisationsfiltern fur photometrishe Messungen,” Optik 15, 656–669 (1957).

Other (7)

G. Trapani, Polaroid Corporation, Commercial Optics Division, Nor-1 Mezzanine, 1 Upland Rd., Norwood, Mass. 02062 (personal communication).

W. A. Shurcliff, Polarized Light (Harvard U., Cambridge, Mass., 1962), Chap. 4, pp. 43–64.

Polaroid Corporation, 1 Upland Rd. N2, Norwood, Mass. 02062.

E. Collett, Polarized Light Fundamentals and Applications (Marcel Dekker, New York, 1992), Chap. 5, pp. 67–90; Chap. 23, pp. 468–479.

R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1993), pp. 22.1–22.33.

S. McClain, “Birefringent polarization ray tracing: theory and applications,” Ph.D. dissertation (University of Alabama in Huntsville, Huntsville, Ala., 1992), Chap. 6.

J. Bennet, “Polarizers” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1993), pp. 22.1–22.33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Infrared spectropolarimeter. Radiation from the source is collimated before introduction into the Michelson interferometer. A dual-rotating retarder polarimeter employing two polarizers and two achromatic retarders is incorporated into the sample chamber of the Fourier transform infrared spectrometer. The transmitted signal is acquired with a HgCdTe detector.

Fig. 2
Fig. 2

Normalized Mueller matrix spectrum of Polaroid HN22 consists of 16 Mueller matrix element spectra. The nonzero m 22, m 23, m 32, and m 33 elements indicate a linear retarder.

Fig. 3
Fig. 3

Transmittance of HN22 from 3.6 to 5.4 µm for unpolarized light at normal incidence.

Fig. 4
Fig. 4

Diattenuation spectrum of HN22 is small, ∼6%. When the diattenuation is zero, all incident polarization states have equal transmittance. Thus the sheet polarizer is a weak polarizer but a good retarder in the infrared.

Fig. 5
Fig. 5

Retardance spectrum of HN22 at normal incidence varies from 140° to 170° making it nearly a half-wave linear retarder.

Fig. 6
Fig. 6

Retardance spectra as the sample is rotated about its transmission axis displays an increasing retardance. Thus the retardance is readily tuned to a half-wave.

Fig. 7
Fig. 7

Retardance spectra as the sample is rotated about the extinction axis displays a decreasing retardance.

Fig. 8
Fig. 8

Normalized retardance as a function of incident angle for 4.5 µm is approximately quadratic. The upper curve is for rotation about the polarizer’s transmission axis, and the lower curve is for rotation about the extinction axis. Wavelength, 4.5 µm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

121100110000000000,
HWLR0°=1000010000-10000-1.
LR0°, δ1000010000cosδsinδ00-sinδcosδ,
m=M00M01/M00M02/M00M03/M00M10/M00M11/M00M12/M00M13/M00M20/M00M21/M00M22/M00M23/M00M30/M00M31/M00M32/M00M33/M00.
mij=MijM00,  i, j0, 0.

Metrics