Abstract

Infrared extinction optical depth (500–5000 cm-1) has been measured with a Fourier transform infrared spectrometer for clouds produced with an ultrasonic nebulizer. Direct measurement of the cloud droplet size spectra agree with size spectra retrieved from inversion of the extinction measurements. Both indicate that the range of droplet sizes is 1–14 µm. The retrieval was accomplished with an iterative algorithm that simultaneously obtains water-vapor concentration. The basis set of droplet extinction functions are computed once by using numerical integration of the Lorenz–Mie theory over narrow size bins, and a measured water-vapor extinction curve was used. Extinction and size spectra are measured and computed for both steady-state and dissipating clouds. It is demonstrated that anomalous diffraction theory produces relatively poor droplet size and synthetic extinction spectra and that extinction measurements are helpful in assessing the validity of various theories. Calculations of cloud liquid-water content from retrieved size distributions agree with a parameterization based on optical-depth measurements at a wave number of 906 cm-1 for clouds that satisfy the size spectral range assumptions of the parameterization. Significance of droplet and vapor contribution to the total optical depth is used to evaluate the reliability of spectral inversions.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Raman lidar observations of cloud liquid water

Vincenzo Rizi, Marco Iarlori, Giuseppe Rocci, and Guido Visconti
Appl. Opt. 43(35) 6440-6453 (2004)

Infrared extinction spectra of some common liquid aerosols

Hugh R. Carlon, David H. Anderson, Merrill E. Milham, Theodore L. Tarnove, Robert H. Frickel, and I. Sindoni
Appl. Opt. 16(6) 1598-1605 (1977)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription