Abstract

The optical performance of photodetectors in silicon strongly depends on the transmission of incident light into Si and the charge collection efficiency therein. Consequently, improving the transmission efficiency of light into Si by means of an interference antireflectant (AR) filter can lead to improved optoelectric conversion efficiency. However, the design of these filters requires the availability of data on the optical characteristics of the materials used. Furthermore, for the realization of such filters for light detectors realized in silicon, the required compatibility with standard microelectronic processing implies that only Si-compatible materials should be used. The range of such Si-compatible materials available for fabricating photoelectric devices in silicon includes thermally grown SiO2, low-pressure chemical-vapor deposited polysilicon, silicon nitride (low stress and stoichiometric), and oxides (low-temperature oxide, phosphosilicate glass, borosilicate glass, borophosphosilicate glass) as well as plasma-enhanced chemical-vapor deposited oxynitrides. We present the refractive index and the extinction coefficient of these materials in the 380–800-nm range. The data presented enhance the accuracy and applicability of simulation and design tools used to design photodetectors in silicon for the visible range.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin-film optical sensors with silicon-compatible materials

Daniel P. Poenar and Reinoud F. Wolffenbuttel
Appl. Opt. 36(21) 5109-5121 (1997)

Micromachined, silicon filament light source for spectrophotometric microsystems

Juliana Tu, Dwight Howard, Scott D. Collins, and Rosemary L. Smith
Appl. Opt. 42(13) 2388-2397 (2003)

Optical properties of silicon oxynitride dielectric waveguides

Donald E. Bossi, Jacob M. Hammer, and Joseph M. Shaw
Appl. Opt. 26(4) 609-611 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription