Abstract

Flexible hollow glass waveguides with internal metallic and dielectric coatings have been used to deliver high-peak-power transversely excited atmosphere CO2 laser energy. The straight guide loss is as low as 0.17 dB/m for 1000-µm-bore guides and 0.46 dB/m for 530-µm-bore guides propagating the HE11 mode. The loss increases to 0.93 and 1.36 dB/m, respectively, when guides are bent to a radius of 0.25 m. The hollow glass waveguides have been used to deliver pulsed CO2 laser energy successfully with a peak power of 0.7 MW and an energy of 350 mJ per pulse with a gas purge through the hollow core. The delivered average power is as high as 27 W. It is concluded that these waveguides are promising candidates for pulsed CO2 laser delivery in medical and surgical applications.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement and modeling of ablation rate,” Lasers Med. Surgery 8, 264–275 (1988).
    [CrossRef]
  2. J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser ablation of tissue: effect of mechanical properties,” IEEE Trans. Biomed. Eng. 36, 1195–1201 (1989).
    [CrossRef] [PubMed]
  3. M. Luckac, F. Hocevar, S. Cencic, W. Neuberger, “Effects of pulsed CO2 and Er:YAG lasers on enamel and dentin,” in Lasers in Orthopedic, Dental, and Veterinary Medicine II, D. Gal, S.J. O’Brien, C. Vangsness, J. M. White, H. A. Wigdor, eds., Proc. SPIE1880, 169–175 (1993).
  4. V. B. Krapchev, C. Rabii, J. A. Harrington, “Novel CO2 laser system for hard tissue ablation,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE2128, 341–348 (1994).
  5. G. Meese, R. Zuhrt, “Therapy of deep caries by transverse excited atmosphere pressure carbon dioxide laser: an in vitro investigation,” in Lasers in Othopedic, Dental and Veterinary Medicine II, D. Gal, S. J. O’Brien, C. Vangsness, J.M. White, H. A. Wigdor, eds., Proc. SPIE1880, 193–198 (1993).
  6. H. Wigdor, J. T. Walsh, J. Featherstone, S. Visuri, D. Fried, J. Waldvogel, “Lasers in dentistry,” Lasers Med. Surgery 16, 103–133 (1995).
    [CrossRef]
  7. D. Bunimovich, I. Nagli, A. Katzir, “Absorption measurements of mixed silver halide crystals and fibers by laser calorimetry,” Appl. Opt. 33, 117–119 (1994).
    [CrossRef] [PubMed]
  8. V. G. Artjushenko, L. N. Butvina, V. V. Vojtsekhovsky, E. M. Dianov, J. G. Kolesnikov, “Mechanisms of optical losses in polycrystalline KRS-5 fibers,” J. Lightwave Technol. LT-4, 461–465 (1986).
    [CrossRef]
  9. C. C. Gregory, J. A. Harrington, “High peak power CO2 laser transmission by hollow sapphire waveguides,” Appl. Opt. 32, 3976–3980 (1993).
  10. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [CrossRef] [PubMed]
  11. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [CrossRef] [PubMed]
  12. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [CrossRef] [PubMed]
  13. M. Saito, S. Sato, M. Miyagi, “Loss characteristics of infrared hollow waveguides in multimode transmission,” J. Opt. Soc. Am. A 10, 277–282 (1993).
    [CrossRef]
  14. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef] [PubMed]
  15. R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
    [CrossRef] [PubMed]
  16. Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near single-mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
    [CrossRef]
  17. E. Snitzer, Advances in Quantum Electronics (Columbia U. Press, New York, 1961), p. 361.
  18. M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
    [CrossRef]
  19. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
    [CrossRef]
  20. D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, N. Croitoru, “Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides,” Appl. Opt. 28, 708–712 (1989).
    [CrossRef] [PubMed]
  21. S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
    [CrossRef]
  22. M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
    [CrossRef] [PubMed]
  23. R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996).
    [CrossRef] [PubMed]

1996 (2)

1995 (2)

H. Wigdor, J. T. Walsh, J. Featherstone, S. Visuri, D. Fried, J. Waldvogel, “Lasers in dentistry,” Lasers Med. Surgery 16, 103–133 (1995).
[CrossRef]

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

1994 (3)

1993 (3)

1991 (1)

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

1990 (2)

1989 (2)

D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, N. Croitoru, “Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides,” Appl. Opt. 28, 708–712 (1989).
[CrossRef] [PubMed]

J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser ablation of tissue: effect of mechanical properties,” IEEE Trans. Biomed. Eng. 36, 1195–1201 (1989).
[CrossRef] [PubMed]

1988 (1)

J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement and modeling of ablation rate,” Lasers Med. Surgery 8, 264–275 (1988).
[CrossRef]

1986 (1)

V. G. Artjushenko, L. N. Butvina, V. V. Vojtsekhovsky, E. M. Dianov, J. G. Kolesnikov, “Mechanisms of optical losses in polycrystalline KRS-5 fibers,” J. Lightwave Technol. LT-4, 461–465 (1986).
[CrossRef]

1984 (1)

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

1964 (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Abe, S.

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

Abel, T.

Artjushenko, V. G.

V. G. Artjushenko, L. N. Butvina, V. V. Vojtsekhovsky, E. M. Dianov, J. G. Kolesnikov, “Mechanisms of optical losses in polycrystalline KRS-5 fibers,” J. Lightwave Technol. LT-4, 461–465 (1986).
[CrossRef]

Bunimovich, D.

Butvina, L. N.

V. G. Artjushenko, L. N. Butvina, V. V. Vojtsekhovsky, E. M. Dianov, J. G. Kolesnikov, “Mechanisms of optical losses in polycrystalline KRS-5 fibers,” J. Lightwave Technol. LT-4, 461–465 (1986).
[CrossRef]

Cencic, S.

M. Luckac, F. Hocevar, S. Cencic, W. Neuberger, “Effects of pulsed CO2 and Er:YAG lasers on enamel and dentin,” in Lasers in Orthopedic, Dental, and Veterinary Medicine II, D. Gal, S.J. O’Brien, C. Vangsness, J. M. White, H. A. Wigdor, eds., Proc. SPIE1880, 169–175 (1993).

Croitoru, N.

Deutsch, T. F.

J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser ablation of tissue: effect of mechanical properties,” IEEE Trans. Biomed. Eng. 36, 1195–1201 (1989).
[CrossRef] [PubMed]

J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement and modeling of ablation rate,” Lasers Med. Surgery 8, 264–275 (1988).
[CrossRef]

Dianov, E. M.

V. G. Artjushenko, L. N. Butvina, V. V. Vojtsekhovsky, E. M. Dianov, J. G. Kolesnikov, “Mechanisms of optical losses in polycrystalline KRS-5 fibers,” J. Lightwave Technol. LT-4, 461–465 (1986).
[CrossRef]

Dror, J.

Featherstone, J.

H. Wigdor, J. T. Walsh, J. Featherstone, S. Visuri, D. Fried, J. Waldvogel, “Lasers in dentistry,” Lasers Med. Surgery 16, 103–133 (1995).
[CrossRef]

Fried, D.

H. Wigdor, J. T. Walsh, J. Featherstone, S. Visuri, D. Fried, J. Waldvogel, “Lasers in dentistry,” Lasers Med. Surgery 16, 103–133 (1995).
[CrossRef]

Gannot, I.

Goldenberg, E.

Gregory, C. C.

C. C. Gregory, J. A. Harrington, “High peak power CO2 laser transmission by hollow sapphire waveguides,” Appl. Opt. 32, 3976–3980 (1993).

Harada, K.

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

Harrington, J. A.

R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
[CrossRef] [PubMed]

R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near single-mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
[CrossRef] [PubMed]

C. C. Gregory, J. A. Harrington, “High peak power CO2 laser transmission by hollow sapphire waveguides,” Appl. Opt. 32, 3976–3980 (1993).

V. B. Krapchev, C. Rabii, J. A. Harrington, “Novel CO2 laser system for hard tissue ablation,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE2128, 341–348 (1994).

Hirsch, J.

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near single-mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

Hocevar, F.

M. Luckac, F. Hocevar, S. Cencic, W. Neuberger, “Effects of pulsed CO2 and Er:YAG lasers on enamel and dentin,” in Lasers in Orthopedic, Dental, and Veterinary Medicine II, D. Gal, S.J. O’Brien, C. Vangsness, J. M. White, H. A. Wigdor, eds., Proc. SPIE1880, 169–175 (1993).

Karasawa, S.

Katzir, A.

Kawakami, S.

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

Kolesnikov, J. G.

V. G. Artjushenko, L. N. Butvina, V. V. Vojtsekhovsky, E. M. Dianov, J. G. Kolesnikov, “Mechanisms of optical losses in polycrystalline KRS-5 fibers,” J. Lightwave Technol. LT-4, 461–465 (1986).
[CrossRef]

Kozodoy, R. L.

Krapchev, V. B.

V. B. Krapchev, C. Rabii, J. A. Harrington, “Novel CO2 laser system for hard tissue ablation,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE2128, 341–348 (1994).

Luckac, M.

M. Luckac, F. Hocevar, S. Cencic, W. Neuberger, “Effects of pulsed CO2 and Er:YAG lasers on enamel and dentin,” in Lasers in Orthopedic, Dental, and Veterinary Medicine II, D. Gal, S.J. O’Brien, C. Vangsness, J. M. White, H. A. Wigdor, eds., Proc. SPIE1880, 169–175 (1993).

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Matsuura, Y.

Meese, G.

G. Meese, R. Zuhrt, “Therapy of deep caries by transverse excited atmosphere pressure carbon dioxide laser: an in vitro investigation,” in Lasers in Othopedic, Dental and Veterinary Medicine II, D. Gal, S. J. O’Brien, C. Vangsness, J.M. White, H. A. Wigdor, eds., Proc. SPIE1880, 193–198 (1993).

Mendlovic, D.

Miyagi, M.

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

M. Saito, S. Sato, M. Miyagi, “Loss characteristics of infrared hollow waveguides in multimode transmission,” J. Opt. Soc. Am. A 10, 277–282 (1993).
[CrossRef]

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
[CrossRef] [PubMed]

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

Nagli, I.

Neuberger, W.

M. Luckac, F. Hocevar, S. Cencic, W. Neuberger, “Effects of pulsed CO2 and Er:YAG lasers on enamel and dentin,” in Lasers in Orthopedic, Dental, and Veterinary Medicine II, D. Gal, S.J. O’Brien, C. Vangsness, J. M. White, H. A. Wigdor, eds., Proc. SPIE1880, 169–175 (1993).

Nubling, R. K.

Pagkalinawan, A. T.

Rabii, C.

V. B. Krapchev, C. Rabii, J. A. Harrington, “Novel CO2 laser system for hard tissue ablation,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE2128, 341–348 (1994).

Ruschin, S.

Saito, M.

Sato, S.

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Snitzer, E.

E. Snitzer, Advances in Quantum Electronics (Columbia U. Press, New York, 1961), p. 361.

Visuri, S.

H. Wigdor, J. T. Walsh, J. Featherstone, S. Visuri, D. Fried, J. Waldvogel, “Lasers in dentistry,” Lasers Med. Surgery 16, 103–133 (1995).
[CrossRef]

Vojtsekhovsky, V. V.

V. G. Artjushenko, L. N. Butvina, V. V. Vojtsekhovsky, E. M. Dianov, J. G. Kolesnikov, “Mechanisms of optical losses in polycrystalline KRS-5 fibers,” J. Lightwave Technol. LT-4, 461–465 (1986).
[CrossRef]

Waldvogel, J.

H. Wigdor, J. T. Walsh, J. Featherstone, S. Visuri, D. Fried, J. Waldvogel, “Lasers in dentistry,” Lasers Med. Surgery 16, 103–133 (1995).
[CrossRef]

Walsh, J. T.

H. Wigdor, J. T. Walsh, J. Featherstone, S. Visuri, D. Fried, J. Waldvogel, “Lasers in dentistry,” Lasers Med. Surgery 16, 103–133 (1995).
[CrossRef]

J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser ablation of tissue: effect of mechanical properties,” IEEE Trans. Biomed. Eng. 36, 1195–1201 (1989).
[CrossRef] [PubMed]

J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement and modeling of ablation rate,” Lasers Med. Surgery 8, 264–275 (1988).
[CrossRef]

Wigdor, H.

H. Wigdor, J. T. Walsh, J. Featherstone, S. Visuri, D. Fried, J. Waldvogel, “Lasers in dentistry,” Lasers Med. Surgery 16, 103–133 (1995).
[CrossRef]

Zuhrt, R.

G. Meese, R. Zuhrt, “Therapy of deep caries by transverse excited atmosphere pressure carbon dioxide laser: an in vitro investigation,” in Lasers in Othopedic, Dental and Veterinary Medicine II, D. Gal, S. J. O’Brien, C. Vangsness, J.M. White, H. A. Wigdor, eds., Proc. SPIE1880, 193–198 (1993).

Appl. Opt. (9)

C. C. Gregory, J. A. Harrington, “High peak power CO2 laser transmission by hollow sapphire waveguides,” Appl. Opt. 32, 3976–3980 (1993).

D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, N. Croitoru, “Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides,” Appl. Opt. 28, 708–712 (1989).
[CrossRef] [PubMed]

M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
[CrossRef] [PubMed]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

D. Bunimovich, I. Nagli, A. Katzir, “Absorption measurements of mixed silver halide crystals and fibers by laser calorimetry,” Appl. Opt. 33, 117–119 (1994).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996).
[CrossRef] [PubMed]

R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
[CrossRef] [PubMed]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Electron. Lett. (1)

Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near single-mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser ablation of tissue: effect of mechanical properties,” IEEE Trans. Biomed. Eng. 36, 1195–1201 (1989).
[CrossRef] [PubMed]

IEEE Trans. Microwave Theory Tech. (2)

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

J. Lightwave Technol. (1)

V. G. Artjushenko, L. N. Butvina, V. V. Vojtsekhovsky, E. M. Dianov, J. G. Kolesnikov, “Mechanisms of optical losses in polycrystalline KRS-5 fibers,” J. Lightwave Technol. LT-4, 461–465 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lasers Med. Surgery (2)

J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement and modeling of ablation rate,” Lasers Med. Surgery 8, 264–275 (1988).
[CrossRef]

H. Wigdor, J. T. Walsh, J. Featherstone, S. Visuri, D. Fried, J. Waldvogel, “Lasers in dentistry,” Lasers Med. Surgery 16, 103–133 (1995).
[CrossRef]

Opt. Lett. (1)

Other (4)

E. Snitzer, Advances in Quantum Electronics (Columbia U. Press, New York, 1961), p. 361.

M. Luckac, F. Hocevar, S. Cencic, W. Neuberger, “Effects of pulsed CO2 and Er:YAG lasers on enamel and dentin,” in Lasers in Orthopedic, Dental, and Veterinary Medicine II, D. Gal, S.J. O’Brien, C. Vangsness, J. M. White, H. A. Wigdor, eds., Proc. SPIE1880, 169–175 (1993).

V. B. Krapchev, C. Rabii, J. A. Harrington, “Novel CO2 laser system for hard tissue ablation,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE2128, 341–348 (1994).

G. Meese, R. Zuhrt, “Therapy of deep caries by transverse excited atmosphere pressure carbon dioxide laser: an in vitro investigation,” in Lasers in Othopedic, Dental and Veterinary Medicine II, D. Gal, S. J. O’Brien, C. Vangsness, J.M. White, H. A. Wigdor, eds., Proc. SPIE1880, 193–198 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spatial beam profile of the TEA laser: (a) unapertured laser cavity, and (b) when aperture is closed down to allow approximately one third of the energy out of the laser cavity.

Fig. 2
Fig. 2

Spatial beam profile of the TEA laser through a 1000-µm-bore waveguide: (a) incident beam, (b) output of 15-cm-long waveguide, (c) output of 1.1-m-long waveguide.

Fig. 3
Fig. 3

Spatial beam profile of the TEA laser output of a 1.1-m-long waveguide bent to a radius of 25 cm with a bore size of (a) 1000 µm and (b) 530 µm.

Fig. 4
Fig. 4

Effect of the TEA laser mode on loss for three different bore-size hollow glass waveguides. Bore sizes are ♦, 1000 µm; ■, 700 µm; and ▲, 530 µm. The lowest loss was obtained by the cut-back method when the beam had the smallest aperture.

Fig. 5
Fig. 5

Measured loss compared with the calculated loss10 for straight, hollow glass waveguides. Calculations are based on propagation of the lowest-order mode: ♦, data taken by Matsuura et al.10 and ▲, the TEA laser data excluding coupling losses from Fig. 4.

Fig. 6
Fig. 6

Bending losses for different bore-size hollow glass waveguides. Bore sizes are ■, 1000 µm; ●, 700 µm; and ♦, 530 µm.

Fig. 7
Fig. 7

Temporal pulse shape of incident laser energy, A, compared with the pulse shape and B, after traversing a 1.1-m-long, straight 1000-µm-bore guide.

Fig. 8
Fig. 8

High power-handling capability of 700-µm-bore hollow waveguides: (a) number of guides that survived when no purge gas was used compared with (b) guides with a gas purge of nitrogen flowing through the bore at 3 l/min.

Fig. 9
Fig. 9

Average output power of the TEA laser delivered by 0.5-m-long, straight 700-µm-bore waveguides. The pulse energies are ●, 80 mJ/pulse;▲, 200 mJ/pulse; and ■, 350 mJ/pulse.

Tables (1)

Tables Icon

Table 1 Measured and Theoretical Results for Full-Angle Beam Divergence fro Hollow Glass Waveguides with Different Bore Sizes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin θm=Umλ2πa,

Metrics