Abstract

We generated subpicosecond pulses from 8 to 18 µm by difference-frequency mixing in a 1-mm-thick AgGaSe2 crystal, the 130- and 180-fs output pulses (1.45 < λ < 1.85 µm) from an 84-MHz-repetition-rate optical parametric oscillator. Numerical simulations show that intrapulse and interpulse group velocity dispersion determine minimum pulse duration above and below 15 µm, respectively. By cross correlation (upconversion) of 10.5-µm pulses with 90-fs, 810-nm pulses in AgGaS2, the pulse length was measured to be 310 fs in good agreement with simulations.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Fu, G. Mak, H. M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser,” Opt. Lett. 17, 1006–1008 (1992).
    [CrossRef] [PubMed]
  2. W. S. Pelouch, P. E. Powers, C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070–1072 (1992).
    [CrossRef] [PubMed]
  3. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Güntar, “High-repetition-rate femtosecond optical parametric oscillator based on KNbO3,” Opt. Lett. 20, 680–682 (1995).
    [CrossRef] [PubMed]
  4. H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B 60, 411–420 (1995); see also special issues on optical parametric oscillators in J. Opt. Soc. Am. B (Nov.1993 and 1995).
  5. M. R. X. de Barros, R. S. Miranda, T. M. Jedju, P. C. Becker, “High-repetition-rate femtosecond mid-infrared pulse generation,” Opt. Lett. 20, 480–482 (1995).
    [CrossRef] [PubMed]
  6. J. D. Kafka, M. L. Watts, J. W. Pieterse, “Infrared pulse generation using a subpicosecond OPO,” in Ultrafast Phenomena IXP. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds., Vol. 60 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1994), pp. 185–186; J. D. Kafka, M. L. Watts, J. W. Pieterse, R. L. Herbst, “Mid-infrared pulse generation using a sub-picosecond OPO,” Appl. Phys. B 60, 449–452 (1995).
  7. A. Lohner, P. Kruk, W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 µm,” Appl. Phys. B 59, 211–213 (1994).
    [CrossRef]
  8. R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
    [CrossRef]
  9. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), p. 82
  10. E. C. Cheung, K. Koch, G. T. Moore, “Silver thiogallate, singly resonant optical parametric oscillator pumped by a continuous-wave mode-locked Nd:YAG laser,” Opt. Lett. 19, 631–633 (1994);C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico, G. C. Catella, “Thermal lensing in silver gallium selenide parametric oscillator crystals,” Appl. Opt. 33, 3192–3197 (1994).
    [CrossRef] [PubMed]
  11. A. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276–1283 (1983);E. Sidick, A. Knoesen, A. Dienes, “Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12, 1704–1712 (1995).
    [CrossRef]
  12. Ref. 9, p. 84.
  13. By tuning the Ti:sapphire laser from 750 to 850 nm, thereby increasing the center wavelengths of both signal and idler pulses in the OPO, we calculate that the temporal walkoff minimum can be shifted between 17.5 and 16.1 µm, thus removing some pulse asymmetry and reducing pulse length by as much as 10%.
  14. Coherent Model 9800 optical parametric amplifier product information (Coherent Laser Group, 5100 Patrick Henry Dr., Santa Clara, Calif. 95054).

1995 (3)

1994 (2)

1992 (2)

1983 (1)

A. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276–1283 (1983);E. Sidick, A. Knoesen, A. Dienes, “Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12, 1704–1712 (1995).
[CrossRef]

1974 (1)

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

Becker, P. C.

Bosshard, C.

Byer, R. L.

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

Chemla, D. S.

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

Cheung, E. C.

Choy, M. M.

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

de Barros, M. R. X.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), p. 82

Feigelson, R. S.

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

Fu, Q.

Güntar, P.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), p. 82

Herbst, R. L.

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

Jedju, T. M.

Kafka, J. D.

J. D. Kafka, M. L. Watts, J. W. Pieterse, “Infrared pulse generation using a subpicosecond OPO,” in Ultrafast Phenomena IXP. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds., Vol. 60 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1994), pp. 185–186; J. D. Kafka, M. L. Watts, J. W. Pieterse, R. L. Herbst, “Mid-infrared pulse generation using a sub-picosecond OPO,” Appl. Phys. B 60, 449–452 (1995).

Koch, K.

Kruk, P.

A. Lohner, P. Kruk, W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 µm,” Appl. Phys. B 59, 211–213 (1994).
[CrossRef]

Lohner, A.

A. Lohner, P. Kruk, W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 µm,” Appl. Phys. B 59, 211–213 (1994).
[CrossRef]

Mak, G.

Miranda, R. S.

Moore, G. T.

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), p. 82

Pelouch, W. S.

Pieterse, J. W.

J. D. Kafka, M. L. Watts, J. W. Pieterse, “Infrared pulse generation using a subpicosecond OPO,” in Ultrafast Phenomena IXP. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds., Vol. 60 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1994), pp. 185–186; J. D. Kafka, M. L. Watts, J. W. Pieterse, R. L. Herbst, “Mid-infrared pulse generation using a sub-picosecond OPO,” Appl. Phys. B 60, 449–452 (1995).

Powers, P. E.

Rühle, W. W.

A. Lohner, P. Kruk, W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 µm,” Appl. Phys. B 59, 211–213 (1994).
[CrossRef]

Spence, D. E.

Tang, C. L.

van Driel, H. M.

H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B 60, 411–420 (1995); see also special issues on optical parametric oscillators in J. Opt. Soc. Am. B (Nov.1993 and 1995).

Q. Fu, G. Mak, H. M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser,” Opt. Lett. 17, 1006–1008 (1992).
[CrossRef] [PubMed]

Watts, M. L.

J. D. Kafka, M. L. Watts, J. W. Pieterse, “Infrared pulse generation using a subpicosecond OPO,” in Ultrafast Phenomena IXP. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds., Vol. 60 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1994), pp. 185–186; J. D. Kafka, M. L. Watts, J. W. Pieterse, R. L. Herbst, “Mid-infrared pulse generation using a sub-picosecond OPO,” Appl. Phys. B 60, 449–452 (1995).

Weiner, A.

A. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276–1283 (1983);E. Sidick, A. Knoesen, A. Dienes, “Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12, 1704–1712 (1995).
[CrossRef]

Wielandy, S.

Appl. Phys. B (2)

H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B 60, 411–420 (1995); see also special issues on optical parametric oscillators in J. Opt. Soc. Am. B (Nov.1993 and 1995).

A. Lohner, P. Kruk, W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 µm,” Appl. Phys. B 59, 211–213 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276–1283 (1983);E. Sidick, A. Knoesen, A. Dienes, “Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12, 1704–1712 (1995).
[CrossRef]

Opt. Lett. (5)

Other (5)

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), p. 82

J. D. Kafka, M. L. Watts, J. W. Pieterse, “Infrared pulse generation using a subpicosecond OPO,” in Ultrafast Phenomena IXP. F. Barbara, W. H. Knox, G. A. Mourou, A. H. Zewail, eds., Vol. 60 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1994), pp. 185–186; J. D. Kafka, M. L. Watts, J. W. Pieterse, R. L. Herbst, “Mid-infrared pulse generation using a sub-picosecond OPO,” Appl. Phys. B 60, 449–452 (1995).

Ref. 9, p. 84.

By tuning the Ti:sapphire laser from 750 to 850 nm, thereby increasing the center wavelengths of both signal and idler pulses in the OPO, we calculate that the temporal walkoff minimum can be shifted between 17.5 and 16.1 µm, thus removing some pulse asymmetry and reducing pulse length by as much as 10%.

Coherent Model 9800 optical parametric amplifier product information (Coherent Laser Group, 5100 Patrick Henry Dr., Santa Clara, Calif. 95054).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup with FWHM of pulses and tuning ranges indicated. The DF spectra were recorded by replacing the Ge filter with a lens and a monochromator.

Fig. 2
Fig. 2

(a) Normalized spectra of the idler (left trace) and signal beams produced by the OPO. (b) Normalized spectra of the DF beams obtained by tuning the OPO and adjusting the AgGaSe2 phase-matching angle (50°–60°). The lowest wavelength spectrum shown corresponds to the DF beam produced by mixing the signal and idler beams indicated in (a). The solid curves are Gaussian fits.

Fig. 3
Fig. 3

Calculated DF pulse duration resulting from dispersion effects in AgGaSe2. The dashed curve represents pulse broadening per millimeter associated with GVD for a pulse with a bandwidth of 80 cm-1. The dotted curve represents the temporal walkoff per millimeter caused by GVM between the DF pulse and the overlapped signal and idler pulses. The solid curve represents the calculated DF pulse width as determined by simulations of DF pulse generation from 130- and 180-fs input pulses, mixed in a 1-mm-thick crystal and taking into account GVM and GVD. The data point (●) corresponds to the cross-correlation result, as indicated in Fig. 4.

Fig. 4
Fig. 4

Normalized cross-correlation data point (●) between the 10.5-µm DF pulses and the 810-nm, 100-fs Ti:sapphire pulses. Negative delay corresponds to the 810-nm pulse arriving at the crystal before the DF pulse. Curves represent results from numerical simulations for various DF pulse widths: dashed curve, DF pulse width of 25 fs; solid curve, pulse width of 310 fs; dash–dot curve, pulse width of 600 fs. The curves corresponding to 25 and 600 fs are for illustration purposes only.

Metrics