Abstract

Single-pass Raman cells pumped by either a quadrupled Nd:YAG (266-nm) laser or a KrF excimer laser are studied. The Raman-active gases comprise H2, D2, or CH4, as well as a mixture of them, with the addition of He, Ne, or Ar. A parametric study, in which the Stokes conversion efficiency and the beam quality (M 2) were measured, was made. The first Stokes efficiency increases and all the Stokes thresholds decrease with an increase in the lens focal length or the M 2 parameter of the pump beam. The quality of the Stokes beams deteriorates when the active-gas pressure increases but is improved by the addition of an inert gas. Laser-induced breakdown is shown to be a factor that limits the conversion efficiency and the quality of the Stokes beams. With a mixture of D2, H2, and Ar, a 10–15-mJ pulse energy is obtained (depending on the pump M 2 parameter) in the first Stokes beam of D2 (289 nm) and H2 (299 nm), with a full-angle divergence of 0.5 mrad (at 86% power).

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
    [CrossRef]
  2. W. B. Grant, E. V. Browell, N. S. Higdon, S. Ismail, “Raman shifting of KrF laser radiation for tropospheric ozone measurements,” Appl. Opt. 30, 2628–2633 (1991).
    [CrossRef] [PubMed]
  3. J. A. Sunesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
    [CrossRef] [PubMed]
  4. S. E. Bisson, “Parametric study of an excimer-pumped, nitrogen Raman shifter for lidar applications,” Appl. Opt. 34, 3406–3412 (1995).
    [CrossRef] [PubMed]
  5. Z. Chu, U. N. Singh, T. D. Wilkerson, “Multiple Stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements,” Appl. Opt. 30, 4350–4357 (1991).
    [CrossRef] [PubMed]
  6. C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
    [CrossRef]
  7. B. W. Nicholson, J. A. Russel, D. W. Trainor, T. Roberts, C. Higgs, “Phasefront preservation in high-gain Raman amplification,” IEEE J. Quantum Electron. 26, 1285–1291 (1990).
    [CrossRef]
  8. D. W. Trainor, “Military excimer-laser technology seeks realword uses,” Laser Focus World 29(6), 143–149 (1993).
  9. J. Bosenberg, ed., “Tropospheric environmental studies by laser sounding,” (Max-Planck Institut für Meteorologie, Hamburg, Germany, 1996).
  10. K. Sentrayan, A. Michael, V. Kushawaha, “Design of a compact blue-green stimulated hydrogen Raman shifter,” Appl. Phys. B 62, 479–483 (1996).
    [CrossRef]
  11. D. W. Trainor, H. A. Hyman, R. M. Heinrichs, “Stimulated Raman scattering of XeF* laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929–1934 (1982).
    [CrossRef]
  12. A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
    [CrossRef]
  13. J. A. Sunesson, A. Apituley, “RIVM tropospheric ozone lidar, report II: system description and first results,” (Dutch National Institute of Public Health and Environmental Protection, May1991).
  14. U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
    [CrossRef]
  15. J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Quality of the Stokes beam in stimulated Raman scattering,” IEEE J. Quantum Electron. 30, 2211–2219 (1994).
    [CrossRef]
  16. D. Diebel, M. Bristow, R. Zimmermann, “Stokes shifted laser lines in KrF-pumped hydrogen: reduction of beam divergence by addition of helium,” Appl. Opt. 30, 626–628 (1991).
    [CrossRef] [PubMed]
  17. X. Cheng, T. Kobayashi, “Raman wave front of higher-order Stokes and four-wave-mixing processes,” J. Opt. Soc. Am. B 5, 2363–2367 (1988).
    [CrossRef]
  18. X. Cheng, R. Wang, Q. Lou, Z. Wang, “Investigation of the Raman wavefront of higher-order Gaussian-Hermite modes,” Opt. Commun. 64, 67–71 (1987).
    [CrossRef]
  19. See, e.g., J. Reintjes, R. H. Lehmberg, R. S. F. Chang, M. T. Duignan, G. Calame, “Beam cleanup with stimulated Raman scattering in the intensity-averaging regime,” J. Opt. Soc. Am. B 3, 1408–1427 (1986).
  20. L. Schoulepnikoff, V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” J. Opt. Soc. Am. B 14, 62–75 (1997).
    [CrossRef]
  21. L. Schoulepnikoff, V. Mitev, “High-gain single-pass stimulated Raman scattering and four-wave-mixing in a focused beam geometry: numerical study,” Pure Appl. Opt. 6, 227–302 (1997).
    [CrossRef]
  22. T. Yagi, Y. S. Huo, “Laser-induced breakdown in H2 gas at 248 nm,” Appl. Opt. 35, 3183–3184 (1996).
    [CrossRef] [PubMed]
  23. D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer, Berlin, 1979).
    [CrossRef]
  24. W. K. Bischel, M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
    [CrossRef]
  25. D. A. Russel, W. B. Roh, “High-resolution CARS measurement of Raman linewidths of deuterium,” J. Mol. Spectrosc. 124, 240–242 (1987).
    [CrossRef]
  26. Y. Taira, K. Ide, H. Takuma, “Accurate measurement of the pressure broadening of the ν1 Raman line of CH4 in the 1–50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–302 (1982).
    [CrossRef]
  27. W. K. Bischel, G. Black, “Wavelength dependence of the Raman scattering cross section from 200-600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.
  28. C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1969).
    [CrossRef]
  29. R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
    [CrossRef]
  30. D. Cotter, D. C. Hanna, R. Wyatt, “Infrared stimulated Raman generation effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
    [CrossRef]
  31. G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
    [CrossRef]
  32. J. Bartels, H. Borchers, H. Hausen, K.-H. Hellwege, K. L. Schafer, E. Schmidt, Landolt-Börnstein Zahlenwerte und Funktionen (Springer-Verlag, Berlin, 1962), pp. 6.871–6.885.
  33. E. W. Washburn, International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1930), Vol. VII, pp. 1–11.
  34. G. Herzberg, Molecular Spectra and Molecular Structure, 2nd ed. (Krieger, Malabar, Fla., 1989, Vol. 1, Chap. VII.
  35. G. E. Hahne, C. Chackerian, “Vibration–rotation line shifts for, 1∑g+ H2(ν, J) - 1S0 He computed via close coupling: temperature dependence,” J. Chem. Phys. 73, 3223–3231 (1980).
    [CrossRef]
  36. D. Robert, J. Bonamy, F. Marsault-Herail, G. Levi, J.-P. Marsault, “Evidence for vibrational broadening of Raman lines in H2–rare gas mixtures,” Chem. Phys. Lett. 74, 467–471 (1980).
    [CrossRef]
  37. K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collision with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
    [CrossRef]
  38. A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
    [CrossRef]
  39. C. G. Morgan, “Laser-induced electrical breakdown of gases,” in Electrical Breakdown of Gases, J. M. Meek, J. D. Craggs, eds. (Wiley, New York, 1978), pp. 717–736.
  40. D. R. Lide, CRC Handbook of Chemistry and Physics, 74th ed. (CRC Press, Boca Raton, Fla., 1993), pp. 10-205–10-226.
  41. J. R. Murray, J. Goldhar, D. Eimerl, A. Szöoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
    [CrossRef]
  42. J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
    [CrossRef]

1997

L. Schoulepnikoff, V. Mitev, “High-gain single-pass stimulated Raman scattering and four-wave-mixing in a focused beam geometry: numerical study,” Pure Appl. Opt. 6, 227–302 (1997).
[CrossRef]

L. Schoulepnikoff, V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” J. Opt. Soc. Am. B 14, 62–75 (1997).
[CrossRef]

1996

T. Yagi, Y. S. Huo, “Laser-induced breakdown in H2 gas at 248 nm,” Appl. Opt. 35, 3183–3184 (1996).
[CrossRef] [PubMed]

K. Sentrayan, A. Michael, V. Kushawaha, “Design of a compact blue-green stimulated hydrogen Raman shifter,” Appl. Phys. B 62, 479–483 (1996).
[CrossRef]

1995

R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[CrossRef]

S. E. Bisson, “Parametric study of an excimer-pumped, nitrogen Raman shifter for lidar applications,” Appl. Opt. 34, 3406–3412 (1995).
[CrossRef] [PubMed]

1994

J. A. Sunesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
[CrossRef] [PubMed]

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Quality of the Stokes beam in stimulated Raman scattering,” IEEE J. Quantum Electron. 30, 2211–2219 (1994).
[CrossRef]

1993

D. W. Trainor, “Military excimer-laser technology seeks realword uses,” Laser Focus World 29(6), 143–149 (1993).

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
[CrossRef]

1991

1990

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

B. W. Nicholson, J. A. Russel, D. W. Trainor, T. Roberts, C. Higgs, “Phasefront preservation in high-gain Raman amplification,” IEEE J. Quantum Electron. 26, 1285–1291 (1990).
[CrossRef]

1988

A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
[CrossRef]

X. Cheng, T. Kobayashi, “Raman wave front of higher-order Stokes and four-wave-mixing processes,” J. Opt. Soc. Am. B 5, 2363–2367 (1988).
[CrossRef]

1987

K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collision with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[CrossRef]

X. Cheng, R. Wang, Q. Lou, Z. Wang, “Investigation of the Raman wavefront of higher-order Gaussian-Hermite modes,” Opt. Commun. 64, 67–71 (1987).
[CrossRef]

D. A. Russel, W. B. Roh, “High-resolution CARS measurement of Raman linewidths of deuterium,” J. Mol. Spectrosc. 124, 240–242 (1987).
[CrossRef]

1986

1982

Y. Taira, K. Ide, H. Takuma, “Accurate measurement of the pressure broadening of the ν1 Raman line of CH4 in the 1–50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–302 (1982).
[CrossRef]

D. W. Trainor, H. A. Hyman, R. M. Heinrichs, “Stimulated Raman scattering of XeF* laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929–1934 (1982).
[CrossRef]

1980

G. E. Hahne, C. Chackerian, “Vibration–rotation line shifts for, 1∑g+ H2(ν, J) - 1S0 He computed via close coupling: temperature dependence,” J. Chem. Phys. 73, 3223–3231 (1980).
[CrossRef]

D. Robert, J. Bonamy, F. Marsault-Herail, G. Levi, J.-P. Marsault, “Evidence for vibrational broadening of Raman lines in H2–rare gas mixtures,” Chem. Phys. Lett. 74, 467–471 (1980).
[CrossRef]

1979

J. R. Murray, J. Goldhar, D. Eimerl, A. Szöoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[CrossRef]

1975

D. Cotter, D. C. Hanna, R. Wyatt, “Infrared stimulated Raman generation effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
[CrossRef]

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
[CrossRef]

1969

C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1969).
[CrossRef]

Apituley, A.

J. A. Sunesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
[CrossRef] [PubMed]

J. A. Sunesson, A. Apituley, “RIVM tropospheric ozone lidar, report II: system description and first results,” (Dutch National Institute of Public Health and Environmental Protection, May1991).

Ariel, E. D.

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

Bartels, J.

J. Bartels, H. Borchers, H. Hausen, K.-H. Hellwege, K. L. Schafer, E. Schmidt, Landolt-Börnstein Zahlenwerte und Funktionen (Springer-Verlag, Berlin, 1962), pp. 6.871–6.885.

Bischel, W. K.

W. K. Bischel, M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
[CrossRef]

W. K. Bischel, G. Black, “Wavelength dependence of the Raman scattering cross section from 200-600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

Bisson, S. E.

Bjorklund, G. C.

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
[CrossRef]

Black, G.

W. K. Bischel, G. Black, “Wavelength dependence of the Raman scattering cross section from 200-600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

Bonamy, J.

D. Robert, J. Bonamy, F. Marsault-Herail, G. Levi, J.-P. Marsault, “Evidence for vibrational broadening of Raman lines in H2–rare gas mixtures,” Chem. Phys. Lett. 74, 467–471 (1980).
[CrossRef]

Borchers, H.

J. Bartels, H. Borchers, H. Hausen, K.-H. Hellwege, K. L. Schafer, E. Schmidt, Landolt-Börnstein Zahlenwerte und Funktionen (Springer-Verlag, Berlin, 1962), pp. 6.871–6.885.

Bradley, L. C.

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

Bristow, M.

Browell, E. V.

Calame, G.

Carnuth, W.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Chackerian, C.

G. E. Hahne, C. Chackerian, “Vibration–rotation line shifts for, 1∑g+ H2(ν, J) - 1S0 He computed via close coupling: temperature dependence,” J. Chem. Phys. 73, 3223–3231 (1980).
[CrossRef]

Chang, R. S. F.

Cheng, X.

X. Cheng, T. Kobayashi, “Raman wave front of higher-order Stokes and four-wave-mixing processes,” J. Opt. Soc. Am. B 5, 2363–2367 (1988).
[CrossRef]

X. Cheng, R. Wang, Q. Lou, Z. Wang, “Investigation of the Raman wavefront of higher-order Gaussian-Hermite modes,” Opt. Commun. 64, 67–71 (1987).
[CrossRef]

Chu, Z.

Cotter, D.

D. Cotter, D. C. Hanna, R. Wyatt, “Infrared stimulated Raman generation effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
[CrossRef]

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer, Berlin, 1979).
[CrossRef]

Diebel, D.

Duignan, M. T.

Dyer, M. J.

Eimerl, D.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szöoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[CrossRef]

Godfried, H. P.

R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[CrossRef]

Goldhar, J.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szöoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[CrossRef]

Grant, W. B.

Hahne, G. E.

G. E. Hahne, C. Chackerian, “Vibration–rotation line shifts for, 1∑g+ H2(ν, J) - 1S0 He computed via close coupling: temperature dependence,” J. Chem. Phys. 73, 3223–3231 (1980).
[CrossRef]

Haner, D. A.

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

Hanna, D. C.

D. Cotter, D. C. Hanna, R. Wyatt, “Infrared stimulated Raman generation effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
[CrossRef]

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer, Berlin, 1979).
[CrossRef]

Hausen, H.

J. Bartels, H. Borchers, H. Hausen, K.-H. Hellwege, K. L. Schafer, E. Schmidt, Landolt-Börnstein Zahlenwerte und Funktionen (Springer-Verlag, Berlin, 1962), pp. 6.871–6.885.

Heeman, R. J.

R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[CrossRef]

Heinrichs, R. M.

D. W. Trainor, H. A. Hyman, R. M. Heinrichs, “Stimulated Raman scattering of XeF* laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929–1934 (1982).
[CrossRef]

Hellwege, K.-H.

J. Bartels, H. Borchers, H. Hausen, K.-H. Hellwege, K. L. Schafer, E. Schmidt, Landolt-Börnstein Zahlenwerte und Funktionen (Springer-Verlag, Berlin, 1962), pp. 6.871–6.885.

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure, 2nd ed. (Krieger, Malabar, Fla., 1989, Vol. 1, Chap. VII.

Higdon, N. S.

Higgs, C.

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

B. W. Nicholson, J. A. Russel, D. W. Trainor, T. Roberts, C. Higgs, “Phasefront preservation in high-gain Raman amplification,” IEEE J. Quantum Electron. 26, 1285–1291 (1990).
[CrossRef]

Huo, Y. S.

Hurst, W. S.

K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collision with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[CrossRef]

Hyman, H. A.

D. W. Trainor, H. A. Hyman, R. M. Heinrichs, “Stimulated Raman scattering of XeF* laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929–1934 (1982).
[CrossRef]

Ide, K.

Y. Taira, K. Ide, H. Takuma, “Accurate measurement of the pressure broadening of the ν1 Raman line of CH4 in the 1–50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–302 (1982).
[CrossRef]

Ismail, S.

Johnston, T. F.

A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

Kempfer, U.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Kobayashi, T.

Kushawaha, V.

K. Sentrayan, A. Michael, V. Kushawaha, “Design of a compact blue-green stimulated hydrogen Raman shifter,” Appl. Phys. B 62, 479–483 (1996).
[CrossRef]

Lehmberg, R. H.

Lerou, R. J. L.

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Quality of the Stokes beam in stimulated Raman scattering,” IEEE J. Quantum Electron. 30, 2211–2219 (1994).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
[CrossRef]

Levi, G.

D. Robert, J. Bonamy, F. Marsault-Herail, G. Levi, J.-P. Marsault, “Evidence for vibrational broadening of Raman lines in H2–rare gas mixtures,” Chem. Phys. Lett. 74, 467–471 (1980).
[CrossRef]

Lotz, R.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Lou, Q.

X. Cheng, R. Wang, Q. Lou, Z. Wang, “Investigation of the Raman wavefront of higher-order Gaussian-Hermite modes,” Opt. Commun. 64, 67–71 (1987).
[CrossRef]

Luches, A.

A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
[CrossRef]

Marsault, J.-P.

D. Robert, J. Bonamy, F. Marsault-Herail, G. Levi, J.-P. Marsault, “Evidence for vibrational broadening of Raman lines in H2–rare gas mixtures,” Chem. Phys. Lett. 74, 467–471 (1980).
[CrossRef]

Marsault-Herail, F.

D. Robert, J. Bonamy, F. Marsault-Herail, G. Levi, J.-P. Marsault, “Evidence for vibrational broadening of Raman lines in H2–rare gas mixtures,” Chem. Phys. Lett. 74, 467–471 (1980).
[CrossRef]

McDermid, I. S.

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

Michael, A.

K. Sentrayan, A. Michael, V. Kushawaha, “Design of a compact blue-green stimulated hydrogen Raman shifter,” Appl. Phys. B 62, 479–483 (1996).
[CrossRef]

Mitev, V.

L. Schoulepnikoff, V. Mitev, “High-gain single-pass stimulated Raman scattering and four-wave-mixing in a focused beam geometry: numerical study,” Pure Appl. Opt. 6, 227–302 (1997).
[CrossRef]

L. Schoulepnikoff, V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” J. Opt. Soc. Am. B 14, 62–75 (1997).
[CrossRef]

Morgan, C. G.

C. G. Morgan, “Laser-induced electrical breakdown of gases,” in Electrical Breakdown of Gases, J. M. Meek, J. D. Craggs, eds. (Wiley, New York, 1978), pp. 717–736.

Murray, J. R.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szöoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[CrossRef]

Nassisi, V.

A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
[CrossRef]

Nicholson, B. W.

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

B. W. Nicholson, J. A. Russel, D. W. Trainor, T. Roberts, C. Higgs, “Phasefront preservation in high-gain Raman amplification,” IEEE J. Quantum Electron. 26, 1285–1291 (1990).
[CrossRef]

Perrone, M. R.

A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
[CrossRef]

Player, B. E.

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

Reintjes, J.

Robert, D.

D. Robert, J. Bonamy, F. Marsault-Herail, G. Levi, J.-P. Marsault, “Evidence for vibrational broadening of Raman lines in H2–rare gas mixtures,” Chem. Phys. Lett. 74, 467–471 (1980).
[CrossRef]

Roberts, T.

B. W. Nicholson, J. A. Russel, D. W. Trainor, T. Roberts, C. Higgs, “Phasefront preservation in high-gain Raman amplification,” IEEE J. Quantum Electron. 26, 1285–1291 (1990).
[CrossRef]

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

Roh, W. B.

D. A. Russel, W. B. Roh, “High-resolution CARS measurement of Raman linewidths of deuterium,” J. Mol. Spectrosc. 124, 240–242 (1987).
[CrossRef]

Rosasco, G. J.

K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collision with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[CrossRef]

Russel, D. A.

D. A. Russel, W. B. Roh, “High-resolution CARS measurement of Raman linewidths of deuterium,” J. Mol. Spectrosc. 124, 240–242 (1987).
[CrossRef]

Russel, J. A.

B. W. Nicholson, J. A. Russel, D. W. Trainor, T. Roberts, C. Higgs, “Phasefront preservation in high-gain Raman amplification,” IEEE J. Quantum Electron. 26, 1285–1291 (1990).
[CrossRef]

Russell, J. A.

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

Sasnett, M. W.

A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

Schafer, K. L.

J. Bartels, H. Borchers, H. Hausen, K.-H. Hellwege, K. L. Schafer, E. Schmidt, Landolt-Börnstein Zahlenwerte und Funktionen (Springer-Verlag, Berlin, 1962), pp. 6.871–6.885.

Schmidt, E.

J. Bartels, H. Borchers, H. Hausen, K.-H. Hellwege, K. L. Schafer, E. Schmidt, Landolt-Börnstein Zahlenwerte und Funktionen (Springer-Verlag, Berlin, 1962), pp. 6.871–6.885.

Schoulepnikoff, L.

L. Schoulepnikoff, V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” J. Opt. Soc. Am. B 14, 62–75 (1997).
[CrossRef]

L. Schoulepnikoff, V. Mitev, “High-gain single-pass stimulated Raman scattering and four-wave-mixing in a focused beam geometry: numerical study,” Pure Appl. Opt. 6, 227–302 (1997).
[CrossRef]

Sentrayan, K.

K. Sentrayan, A. Michael, V. Kushawaha, “Design of a compact blue-green stimulated hydrogen Raman shifter,” Appl. Phys. B 62, 479–483 (1996).
[CrossRef]

Siegman, A. E.

A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

Singh, U. N.

Smith, M. J.

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

Smyth, K. C.

K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collision with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[CrossRef]

Sunesson, J. A.

J. A. Sunesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
[CrossRef] [PubMed]

J. A. Sunesson, A. Apituley, “RIVM tropospheric ozone lidar, report II: system description and first results,” (Dutch National Institute of Public Health and Environmental Protection, May1991).

Swart, D. P. J.

Szöoke, A.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szöoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[CrossRef]

Taira, Y.

Y. Taira, K. Ide, H. Takuma, “Accurate measurement of the pressure broadening of the ν1 Raman line of CH4 in the 1–50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–302 (1982).
[CrossRef]

Takuma, H.

Y. Taira, K. Ide, H. Takuma, “Accurate measurement of the pressure broadening of the ν1 Raman line of CH4 in the 1–50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–302 (1982).
[CrossRef]

Trainor, D. W.

D. W. Trainor, “Military excimer-laser technology seeks realword uses,” Laser Focus World 29(6), 143–149 (1993).

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

B. W. Nicholson, J. A. Russel, D. W. Trainor, T. Roberts, C. Higgs, “Phasefront preservation in high-gain Raman amplification,” IEEE J. Quantum Electron. 26, 1285–1291 (1990).
[CrossRef]

D. W. Trainor, H. A. Hyman, R. M. Heinrichs, “Stimulated Raman scattering of XeF* laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929–1934 (1982).
[CrossRef]

Trickl, T.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

van den Heuvel, J. C.

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Quality of the Stokes beam in stimulated Raman scattering,” IEEE J. Quantum Electron. 30, 2211–2219 (1994).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
[CrossRef]

van Putten, F. J. M.

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Quality of the Stokes beam in stimulated Raman scattering,” IEEE J. Quantum Electron. 30, 2211–2219 (1994).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
[CrossRef]

Wang, C.-S.

C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1969).
[CrossRef]

Wang, R.

X. Cheng, R. Wang, Q. Lou, Z. Wang, “Investigation of the Raman wavefront of higher-order Gaussian-Hermite modes,” Opt. Commun. 64, 67–71 (1987).
[CrossRef]

Wang, Z.

X. Cheng, R. Wang, Q. Lou, Z. Wang, “Investigation of the Raman wavefront of higher-order Gaussian-Hermite modes,” Opt. Commun. 64, 67–71 (1987).
[CrossRef]

Wilkerson, T. D.

Wyatt, R.

D. Cotter, D. C. Hanna, R. Wyatt, “Infrared stimulated Raman generation effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
[CrossRef]

Yagi, T.

Yuratich, M. A.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer, Berlin, 1979).
[CrossRef]

Zimmermann, R.

Appl. Opt.

Appl. Phys.

D. Cotter, D. C. Hanna, R. Wyatt, “Infrared stimulated Raman generation effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
[CrossRef]

Appl. Phys. B

K. Sentrayan, A. Michael, V. Kushawaha, “Design of a compact blue-green stimulated hydrogen Raman shifter,” Appl. Phys. B 62, 479–483 (1996).
[CrossRef]

A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
[CrossRef]

Chem. Phys. Lett.

Y. Taira, K. Ide, H. Takuma, “Accurate measurement of the pressure broadening of the ν1 Raman line of CH4 in the 1–50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–302 (1982).
[CrossRef]

D. Robert, J. Bonamy, F. Marsault-Herail, G. Levi, J.-P. Marsault, “Evidence for vibrational broadening of Raman lines in H2–rare gas mixtures,” Chem. Phys. Lett. 74, 467–471 (1980).
[CrossRef]

IEEE J. Quantum Electron.

A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szöoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15, 342–368 (1979).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
[CrossRef]

R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Quality of the Stokes beam in stimulated Raman scattering,” IEEE J. Quantum Electron. 30, 2211–2219 (1994).
[CrossRef]

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

D. W. Trainor, H. A. Hyman, R. M. Heinrichs, “Stimulated Raman scattering of XeF* laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929–1934 (1982).
[CrossRef]

C. Higgs, J. A. Russell, D. W. Trainor, T. Roberts, E. D. Ariel, B. E. Player, B. W. Nicholson, M. J. Smith, L. C. Bradley, “Adaptive-optics compensation in a Raman amplifier configuration,” IEEE J. Quantum Electron. 26, 934–941 (1990).
[CrossRef]

B. W. Nicholson, J. A. Russel, D. W. Trainor, T. Roberts, C. Higgs, “Phasefront preservation in high-gain Raman amplification,” IEEE J. Quantum Electron. 26, 1285–1291 (1990).
[CrossRef]

J. Chem. Phys.

K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2Q-branch line broadening coefficients for collision with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[CrossRef]

G. E. Hahne, C. Chackerian, “Vibration–rotation line shifts for, 1∑g+ H2(ν, J) - 1S0 He computed via close coupling: temperature dependence,” J. Chem. Phys. 73, 3223–3231 (1980).
[CrossRef]

J. Mol. Spectrosc.

D. A. Russel, W. B. Roh, “High-resolution CARS measurement of Raman linewidths of deuterium,” J. Mol. Spectrosc. 124, 240–242 (1987).
[CrossRef]

J. Opt. Soc. Am. B

Laser Focus World

D. W. Trainor, “Military excimer-laser technology seeks realword uses,” Laser Focus World 29(6), 143–149 (1993).

Opt. Commun.

X. Cheng, R. Wang, Q. Lou, Z. Wang, “Investigation of the Raman wavefront of higher-order Gaussian-Hermite modes,” Opt. Commun. 64, 67–71 (1987).
[CrossRef]

Phys. Rev.

C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1969).
[CrossRef]

Pure Appl. Opt.

L. Schoulepnikoff, V. Mitev, “High-gain single-pass stimulated Raman scattering and four-wave-mixing in a focused beam geometry: numerical study,” Pure Appl. Opt. 6, 227–302 (1997).
[CrossRef]

Rev. Sci. Instrum.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Other

W. K. Bischel, G. Black, “Wavelength dependence of the Raman scattering cross section from 200-600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

J. Bosenberg, ed., “Tropospheric environmental studies by laser sounding,” (Max-Planck Institut für Meteorologie, Hamburg, Germany, 1996).

J. A. Sunesson, A. Apituley, “RIVM tropospheric ozone lidar, report II: system description and first results,” (Dutch National Institute of Public Health and Environmental Protection, May1991).

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer, Berlin, 1979).
[CrossRef]

C. G. Morgan, “Laser-induced electrical breakdown of gases,” in Electrical Breakdown of Gases, J. M. Meek, J. D. Craggs, eds. (Wiley, New York, 1978), pp. 717–736.

D. R. Lide, CRC Handbook of Chemistry and Physics, 74th ed. (CRC Press, Boca Raton, Fla., 1993), pp. 10-205–10-226.

J. Bartels, H. Borchers, H. Hausen, K.-H. Hellwege, K. L. Schafer, E. Schmidt, Landolt-Börnstein Zahlenwerte und Funktionen (Springer-Verlag, Berlin, 1962), pp. 6.871–6.885.

E. W. Washburn, International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1930), Vol. VII, pp. 1–11.

G. Herzberg, Molecular Spectra and Molecular Structure, 2nd ed. (Krieger, Malabar, Fla., 1989, Vol. 1, Chap. VII.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (29)

Fig. 1
Fig. 1

(a) Steady-state Raman gain for H2, D2, and CH4 calculated from the data in Table 1; (b) wave-vector mismatch of the FWM process (P, S 1, S 2, S 3) for H2, D2 and CH4 calculated from the data in Table 3 in Subsection 2.C.

Fig. 2
Fig. 2

(Left panel) transient plane-wave gain reduction for H2, D2, and CH4 as calculated from Eq. (2) with G taken as G f ; (right panel) transient Raman gain for H2, D2, and CH4, which is defined as the steady-state Raman gain times the transient gain reduction. The pump beam parameters are pulse durations of 5 ns (solid curves) or 20 ns (dashed curves), 80-mJ pulse energy, 3-mm radius (at 86% power), and M 2 = 1. The pump beam is focused by a 50-cm lens, which yields a waist of 15 µm and a Rayleigh range of 2.8 mm.

Fig. 3
Fig. 3

Steady-state Raman gain (dashed curve) and the wave-vector mismatch Δk12p3=k1s+k2s -kp-k3s of the FWM process involving P, S 1, S 2, and S 3 (solid curve) for 5-atm H2.

Fig. 4
Fig. 4

Experimental setup for the conversion efficiency and beam-quality (shaded elements) measurements: PB, Pellin–Brocaprism; M’s, mirrors; L’s, lenses; P, prism; W, wedge plate; E’s, energy meters; K, knife edge. For the pump beam-quality measurement, the setup comprising the shaded elements is put at the exit of the laser.

Fig. 5
Fig. 5

M 2 measurement at the output of the Po laser with a 50-cm focal-length lens (defined at 587 nm). The beam width w is shown as a function of the distance z along the optical axis from the focusing lens. The curve of Eqs. (6) is fitted to the measured w(z), which yields w 0 = 0.051 ± 0.005 mm, z f = 446.5 ± 1.0 mm, and M 2 = 3.8 ± 0.2 for the (16%, 84%) clip levels, and w 0 = 0.058 ± 0.004 mm, z f = 446.1 ± 0.8 mm, and M 2 = 4.0 ± 0.2 for the (10%, 90%) clip levels. The uncertainties are determined from the dispersion of the measurement points around the model curve.

Fig. 6
Fig. 6

Photon conversion efficiencies in H2 for the excimer laser with a pump pulse energy of 20 mJ and a lens focal length of 75 cm.

Fig. 7
Fig. 7

Photon conversion efficiencies as functions of pressure for H2, D2, and CH4 obtained with a Po laser with a 75-cm focal-length lens.

Fig. 8
Fig. 8

TNP in one pulse at the cell exit (Su laser), normalized to its maximum value (i.e., when the cell is filled with 1 atm of air), as a function of the H2 pressure and the lens focal length.

Fig. 9
Fig. 9

Steady-state SRS and LIB thresholds in H2 at 266 nm and 300 K. G = 30 has been taken as the definition of the SRS threshold, along with a Rayleigh range of 2.8 mm. For the LIB threshold, a. 1/p a dependence is considered, where p a is the H2 pressure, and adjusted to the experimental data of Alcock et al.40

Fig. 10
Fig. 10

TNP in one pulse at the cell exit, normalized to its maximum value (i.e., when the cell is filled with 1 atm of air), as a function of the equivalent lens focal length at 20-atm pressure. The points are labeled with the lens focal length in centimeters, the number of times the pump beam has been expanded before entering the cell, and the M 2 of the input pump beam (3.9 and 6.2 for the Po and the Su lasers, respectively). The equivalent lens focal length is calculated as the focal length divided by the beam expansion factor and multiplied by 6.2/3.9 = 1.6 for the Su laser.

Fig. 11
Fig. 11

TNP in one pulse at the cell exit, normalized to its maximum value (i.e., when the cell is filled with 1 atm of air), as a function of Ar pressure, for pure Ar (squares) and a mixture of 10-atm H2 (circles) or D2 (crosses) with Ar for the Po laser with a 75-cm focal-length lens.

Fig. 12
Fig. 12

TNP in one pulse at the cell exit, normalized to its maximum value (i.e., when the cell is filled with 1 atm of air), as a function of pressure for H2, D2 and CH4 for the Po laser with a 75-cm focal-length lens.

Fig. 13
Fig. 13

Peak conversion efficiency (upper panel), pressure at which the latter occurs ( a , middle panel), and threshold pressure (bottom panel) in H2 with the (a) Ex laser, (b) Su laser, (c) Po laser. Pressures were not measured below 1 atm, so that when p t or a occurs below this limit they are marked by an asterisk and are displayed in the figure as equal to 1 atm; correspondingly the peak conversion efficiency displayed is the value at 1 atm and is also marked by an asterisk.

Fig. 14
Fig. 14

Same as Fig. 13, but in D2 with (a) the Su laser, (b) the Po laser.

Fig. 15
Fig. 15

Same as Fig. 13, but in CH4 with (a) the Su laser, (b) the Po laser.

Fig. 16
Fig. 16

S 1 photon conversion efficiency in H2 with the Ex laser.

Fig. 17
Fig. 17

S 1 photon conversion efficiency in D2 with the Su laser.

Fig. 18
Fig. 18

S 3 photon conversion efficiency in H2 with the Su laser.

Fig. 19
Fig. 19

Peak photon conversion efficiency in H2 with a 75-cm focal-length lens. Input pulse energies of 55 and 80 mJ for the Su and the Po lasers, respectively, are used, which yield an approximately equal input power (13 MW) for both lasers.

Fig. 20
Fig. 20

Peak photon conversion efficiency in H2 with a 75-cm focal-length lens. Input pulse energies of 40 and 80 mJ for the Po and the Ex lasers, respectively, are used, which yield an approximately equal input power (6.7 MW) for both lasers.

Fig. 21
Fig. 21

Photon conversion efficiency in H2 when He is added to 1.5-atm H2, Ne is added to 3-atm H2, and Ar is added to 10-atm H2. The Po laser, with 75-cm focal-length lens, is used.

Fig. 22
Fig. 22

Photon conversion efficiency in D2 when He is added to 2-atm D2, Ne is added to 3-atm D2, and Ar is added to 10-atm D2. The Po laser, with 75-cm focal-length lens, is used.

Fig. 23
Fig. 23

Photon conversion efficiency with the Su laser in H2 when Ar is added, as a function of the lens focal length (f). The H2 pressure is 5, 10, and 10 atm for f = 25, 50, and 75 cm, respectively.

Fig. 24
Fig. 24

Photon conversion efficiency with the Su laser in D2 when Ar is added, as a function of the lens focal length (f). The D2 pressure is 10 atm for all the cases of f displayed.

Fig. 25
Fig. 25

Photon conversion efficiency when Ar is added to 10-atm CH4. The Po laser, with a 75-cm focal-length lens, is used.

Fig. 26
Fig. 26

Curves yield the dependence of the partial pressures of H2, D2, and Ar in such a way that the steady-state Raman gain of H2 equals that of D2 in a mixture of the three gases. The circles indicate experimental results for which the pressure of Ar could be adjusted so that the energy in the first Stokes beam of D2 equals the energy in the first Stokes beam of H2.

Fig. 27
Fig. 27

Residual pump energy, S 1 of D2, S 1 of H2, S 2 of D2, and S 2 of H2, as functions of Ar pressure in a mixture of H2, D2, and Ar. The parameters are 50 mJ at cell input, Su laser, 7.0-atm H2, 19-atm D2, and 75-cm focal-length lens.

Fig. 28
Fig. 28

Residual pump energy, S 1 of D2, S 1 of H2, S 2 of D2, and S 2 of H2, as functions of Ar pressure in a mixture of H2, D2, and Ar. The parameters are 70 mJ at cell input, Po laser, 5.5-atm H2, 15-atm D2, 75-cm focal-length lens.

Fig. 29
Fig. 29

Residual pump energy, S 1 of D2 and S 1 of H2, as functions of the input pump energy in a mixture of H2, D2, and Ar. The parameters are Po laser, 7.5-atm H2, 18.5-atm D2, 16.5-atm Ar, 75-cm focal-length lens.

Tables (7)

Tables Icon

Table 1 Parameters Used in the Calculation of the Raman Gain at 295 K [Eq. (1)]a

Tables Icon

Table 2 Resonance Fit Parameters at 272 K and 1 atm of the Dispersion Relationa

Tables Icon

Table 3 Broadening Coefficient γ Used in the Calculation of the Raman Linewidth [Eq. (4)]

Tables Icon

Table 4 Mixture of Active and Buffer Gases that Maximize the First Stokes Photon Conversion Efficiency (η̂)

Tables Icon

Table 5 Beam Quality Measured at the Output of the Raman Cella

Tables Icon

Table 6 Experimental Partial Pressures in a Mixture of H2, D2, and Ar that Yield Equal Pulse Energies in the first Stokes beams of D2 and H2 a

Tables Icon

Table 7 Spectrum at Output of a Raman Cell Filled with a Mixture of H2, D2, and Ar, as Dispersed by a Gratinga

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

gp1=2λ1s2hcν1sNkBπcΔνdσdΩ,
G=IpIsIsIp
R=1GtpΔν1/2-14G,
2ik2sz2s=ik2s2k1sk2s1/2gp11221s2p* expizΔk11p2,
Δν=Δν0+γpb,
ηis=Pis/νisj=1J Pj/νj,
w2z=w021+z -zf2z02, z0=πw02M2λ,
w0=λfM2πwL, z0=λf2M2πL2.
IthLIB ν2UitpP,
gSBSgSRS=Cpν1s,
32n2-1n2+2=C1λ1-2 -λ-2+C2λ2-2-λ-2+C3λ3-2-λ-2,

Metrics