Abstract

We conducted a detailed study of the stability of short, erbium-doped fiber lasers fabricated with two UV-induced Bragg gratings written into the doped fiber. We find that the relative intensity noise of single-longitudinal-mode fiber grating lasers is approximately 3 orders of magnitude lower than that of a single-frequency 1.523-µm helium-neon laser. The frequency noise spectrum contains few resonances, none of which exceeds 0.6 kHz/Hz1/2 rms; the integrated rms frequency noise from 50 Hz to 63 kHz is 36 kHz. We also demonstrate a simple method for monitoring the laser power and number of oscillating modes during laser fabrication.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
    [CrossRef]
  2. G. A. Ball, C. E. Holton, G. Hull-Allen, W. W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
    [CrossRef]
  3. S. L. Gilbert, “Frequency stabilization of a tunable erbium-doped fiber laser,” Opt. Lett. 16, 150–152 (1991).
    [PubMed]
  4. R. W. Fox, S. L. Gilbert, L. Hollberg, J. H. Marquardt, “Optical probing of cold trapped atoms,” Opt. Lett. 18, 1456–1458 (1993).
    [CrossRef] [PubMed]
  5. J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28, 1385–1387 (1992).
    [CrossRef]
  6. H. Patrick, S. L. Gilbert, “Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber,” Opt. Lett. 18, 1484–1486 (1993).
    [CrossRef] [PubMed]
  7. The fiber used was AT&T DID920612-1. We use company and trade names to specify the experimental procedure adequately and do not imply endorsement by the National Institute of Standards and Technology.
  8. J. Hübner, T. Feuchter, C. V. Poulsen, M. Kristensen, “Directly UV-written erbium doped waveguides,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).
  9. K. H. Wanser, “Fundamental phase noise limit in optical fibres due to temperature fluctuations,” Electron. Lett. 28, 53–54 (1992).
    [CrossRef]
  10. Y. Suematsu, A. Adams, eds., Handbook of Semiconductor Lasers and Photonic Integrated Circuits (Chapman and Hall, London, 1994), p. 273.

1994 (1)

G. A. Ball, C. E. Holton, G. Hull-Allen, W. W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
[CrossRef]

1993 (3)

1992 (2)

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28, 1385–1387 (1992).
[CrossRef]

K. H. Wanser, “Fundamental phase noise limit in optical fibres due to temperature fluctuations,” Electron. Lett. 28, 53–54 (1992).
[CrossRef]

1991 (1)

Atkins, R. M.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Ball, G. A.

G. A. Ball, C. E. Holton, G. Hull-Allen, W. W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
[CrossRef]

Delavaux, J.-M. P.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

DiGiovanni, D. J.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28, 1385–1387 (1992).
[CrossRef]

Feuchter, T.

J. Hübner, T. Feuchter, C. V. Poulsen, M. Kristensen, “Directly UV-written erbium doped waveguides,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Fox, R. W.

Gilbert, S. L.

Grubb, S. G.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Hollberg, L.

Holton, C. E.

G. A. Ball, C. E. Holton, G. Hull-Allen, W. W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
[CrossRef]

Hübner, J.

J. Hübner, T. Feuchter, C. V. Poulsen, M. Kristensen, “Directly UV-written erbium doped waveguides,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Hull-Allen, G.

G. A. Ball, C. E. Holton, G. Hull-Allen, W. W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
[CrossRef]

Kristensen, M.

J. Hübner, T. Feuchter, C. V. Poulsen, M. Kristensen, “Directly UV-written erbium doped waveguides,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Marquardt, J. H.

Mizrahi, V.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28, 1385–1387 (1992).
[CrossRef]

Morey, W. W.

G. A. Ball, C. E. Holton, G. Hull-Allen, W. W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
[CrossRef]

Park, Y.-K.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Patrick, H.

Poulsen, C. V.

J. Hübner, T. Feuchter, C. V. Poulsen, M. Kristensen, “Directly UV-written erbium doped waveguides,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Sulhoff, J. W.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28, 1385–1387 (1992).
[CrossRef]

Wanser, K. H.

K. H. Wanser, “Fundamental phase noise limit in optical fibres due to temperature fluctuations,” Electron. Lett. 28, 53–54 (1992).
[CrossRef]

Zyskind, J. L.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28, 1385–1387 (1992).
[CrossRef]

Electron. Lett. (2)

K. H. Wanser, “Fundamental phase noise limit in optical fibres due to temperature fluctuations,” Electron. Lett. 28, 53–54 (1992).
[CrossRef]

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett. 28, 1385–1387 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. A. Ball, C. E. Holton, G. Hull-Allen, W. W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
[CrossRef]

J. Lightwave Technol. (1)

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Opt. Lett. (3)

Other (3)

The fiber used was AT&T DID920612-1. We use company and trade names to specify the experimental procedure adequately and do not imply endorsement by the National Institute of Standards and Technology.

J. Hübner, T. Feuchter, C. V. Poulsen, M. Kristensen, “Directly UV-written erbium doped waveguides,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Y. Suematsu, A. Adams, eds., Handbook of Semiconductor Lasers and Photonic Integrated Circuits (Chapman and Hall, London, 1994), p. 273.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic drawing of the experimental setup used for fiber laser fabrication and real-time characterization.

Fig. 2
Fig. 2

Fiber laser output versus the second grating (grating 2) UV exposure time. The exposure time of the first grating (grating 1) is indicated by an upward pointing arrow. The downward pointing arrows correspond approximately to fiber lasers that were sampled for further investigation. The number of longitudinal modes present is indicated by numbers above the arrows. The pump power is approximately 50 mW.

Fig. 3
Fig. 3

Degeneration of fiber laser output associated with optical pumping at 980 nm as observed with the OSA (resolution 0.05 nm). The solid and dashed curves represent the output before and after degeneration occurred, respectively.

Fig. 4
Fig. 4

Relative intensity noise of the dual-mode fiber laser (no. 3). The narrow peaks highlighted by a dashed curve occur at multiples of 60 Hz and are associated with electronic pickup in the detection system.

Fig. 5
Fig. 5

RIN spectra of the bulk helium–neon laser, a dual-mode fiber laser (no. 3), and a single-mode fiber laser (no. 2). The plotted curve for the dual-mode laser illustrates the RIN of a single mode and not the total power. Peaks occurring at multiples of 60 Hz have been filtered from the low-frequency data.

Fig. 6
Fig. 6

Frequency noise spectra of the bulk helium–neon laser, a dual-mode fiber laser (no. 3), and the single-mode fiber laser (no. 2). The dashed curve represents the fundamental limit that is due to thermal fluctuations of the fiber laser cavity. Peaks occurring at multiples of 60 Hz were filtered from the low-frequency data.

Fig. 7
Fig. 7

Relaxation oscillation frequency for a single-mode (triangles) and dual-mode (squares) fiber laser (nos. 2 and 4) as a function of normalized pump power. The solid curve illustrates the theoretical (r - 1)1/2 dependence.

Fig. 8
Fig. 8

Relaxation oscillation amplitude for a single-mode (triangles) and dual-mode (squares) fiber laser (nos. 2 and 4) as a function of normalized pump power.

Tables (1)

Tables Icon

Table 1 Slope and Threshold of Fiber Laser versus Pump Power Curvesa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δνω=c2πnL4πSϕϕL, ω,

Metrics