Abstract

We present and experimentally test a new passive-device incoherent holographic system that removes the bias and the conjugate image. The system is based on the triangular interferometer with the modification of insertion of simple passive devices and can easily be extended for obtaining real-time complex holograms without bias and conjugate images for moving objects. A scheme for real-time reconstruction of the complex hologram is also presented and experimentally tested.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mertz, N. O. Young, “Fresnel transformations of optics,” in Proceedings of the Conference on Optical Instruments and Techniques, K. J. Habell, ed. (Chapman & Hall, London, 1962) p. 305.
  2. A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55, 1555–1556 (1965).
    [CrossRef]
  3. G. Cochran, “New method of making Fresnel transforms with incoherent light,” J. Opt. Soc. Am. 56, 1513–1517 (1966).
    [CrossRef]
  4. P. J. Peters, “Incoherent holograms with a mercury light source,” Appl. Phys. Lett. 8, 209–210 (1966).
    [CrossRef]
  5. F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Boston, Mass., 1973).
  6. G. W. Stroke, R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229–231 (1965).
    [CrossRef]
  7. H. R. Worthington, “Production of holograms with incoherent illumination,” J. Opt. Soc. Am. 56, 1397–1398 (1966).
    [CrossRef]
  8. G. Sirat, D. Psaltis, “Conoscopic holography,” Opt. Lett. 10, 4–6 (1985).
    [CrossRef] [PubMed]
  9. A. Kozma, N. Massey, “Bias level reduction of incoherent holograms,” Appl. Opt. 8, 393–397 (1969).
    [CrossRef] [PubMed]
  10. L. M. Mugnier, G. Y. Sirat, “On-axis conoscopic holography without a conjugate image,” Opt. Lett. 17, 294–296 (1992).
    [CrossRef] [PubMed]
  11. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 5.
  12. P. L. Ransom, “Synthesis of complex optical wavefronts,” Appl. Opt. 11, 2554–2561 (1972).
    [CrossRef] [PubMed]
  13. U. Schnars, W. Jüptner, “Direct recording of holograms by CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef] [PubMed]

1994

1992

1985

1972

1969

1966

1965

A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55, 1555–1556 (1965).
[CrossRef]

G. W. Stroke, R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229–231 (1965).
[CrossRef]

Cochran, G.

Jüptner, W.

Kozma, A.

Lohmann, A. W.

Massey, N.

Mertz, L.

L. Mertz, N. O. Young, “Fresnel transformations of optics,” in Proceedings of the Conference on Optical Instruments and Techniques, K. J. Habell, ed. (Chapman & Hall, London, 1962) p. 305.

Mugnier, L. M.

Peters, P. J.

P. J. Peters, “Incoherent holograms with a mercury light source,” Appl. Phys. Lett. 8, 209–210 (1966).
[CrossRef]

Psaltis, D.

Ransom, P. L.

Restrick, R. C.

G. W. Stroke, R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229–231 (1965).
[CrossRef]

Schnars, U.

Sirat, G.

Sirat, G. Y.

Stroke, G. W.

G. W. Stroke, R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229–231 (1965).
[CrossRef]

Worthington, H. R.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 5.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 5.

Young, N. O.

L. Mertz, N. O. Young, “Fresnel transformations of optics,” in Proceedings of the Conference on Optical Instruments and Techniques, K. J. Habell, ed. (Chapman & Hall, London, 1962) p. 305.

Yu, F. T. S.

F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Boston, Mass., 1973).

Appl. Opt.

Appl. Phys. Lett.

G. W. Stroke, R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229–231 (1965).
[CrossRef]

P. J. Peters, “Incoherent holograms with a mercury light source,” Appl. Phys. Lett. 8, 209–210 (1966).
[CrossRef]

J. Opt. Soc. Am.

Opt. Lett.

Other

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 5.

F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Boston, Mass., 1973).

L. Mertz, N. O. Young, “Fresnel transformations of optics,” in Proceedings of the Conference on Optical Instruments and Techniques, K. J. Habell, ed. (Chapman & Hall, London, 1962) p. 305.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Modified triangular interferometer.

Fig. 2
Fig. 2

Schematic diagram for obtaining real-time complex holograms without bias or the conjugate image for moving objects.

Fig. 3
Fig. 3

Schematic diagram for reconstructing the complex hologram in real time.

Fig. 4
Fig. 4

Optical pattern for a point source obtained from the conventional triangular interferometer.

Fig. 5
Fig. 5

Complex holograms for a point source obtained from the modified triangular interferometer: (a) real part and (b) imaginary part.

Fig. 6
Fig. 6

Images reconstructed numerically from (a) a hologram from a conventional (Cochran’s) triangular interferometer and (b) a complex hologram from the proposed triangular interferometer. In both (a) and (b), the left-hand image shows the reconstructed image, and the right-hand one is its intensity profile.

Fig. 7
Fig. 7

Images reconstructed optically from (a) a hologram from a conventional (Cochran’s) triangular interferometer and (b) a complex hologram from the proposed triangular interferometer. In both (a) and (b), the left-hand image shows the reconstructed image, and the right-hand one is its intensity profile.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Ux, y=12-121212exp-iΓ2200expiΓ221212-1212exp-iΓ1200expiΓ12Uccwx, yUcwx, y=exp-iΓ12cosΓ22Uccwx, y-i expiΓ1sinΓ22Ucwx, y-i sinΓ22Uccwx, y+expiΓ1cosΓ22Ucwx, y,
Ucwx, y=ik22 πz0 exp-ik2z0αx-x02+αy-y02,
Uccwx, y=ik22 πz0 exp-ik2z0βx-x02+βy-y02,
UBx, y=exp-iΓ12cosΓ22Uccwx, y-i expiΓ1sinΓ22Ucwx, yxˆ.
U±cx, y=12 exp-iπ4Uccwx, y±Ucwx, yxˆ.
U±sx, y=12Uccwx, yiUcwx, yxˆ.
I±cx, y=C2±C2 cosk2z1x-x12+y-y12-x12+y12,
I±sx, y=C2C2 sink2z1x-x12+y-y12-x12+y12,
Icx, y=C2 cosk2z1x-x12+y-y12-x12+y12.
Isx, y=C2 sink2z1x-x12+y-y12-x12+y12.
C2 cosk2z1x-x12+y-y12-x12+y12±iC2 sink2z1x-x12+y-y12-x12+y12=C2 exp±ik2z1x-x12+y-y12-x12+y12.
Ucxx, y=12 exp-iπ4Uccwx, y+Ucwx, yxˆ,
Ucyx, y=-i12 exp-iπ4Uccwx, y-Ucwx, yyˆ,
Usxx, y=12Uccwx, y-iUcwx, yxˆ,
Usyx, y=12-iUccwx, y+Ucwx, yyˆ,
Ux, y; z=ExEy,
Uupperx, y; z=0Ey,
Ulowerx, y; z=Ex0,
ULCD1x, y; z=C2 cos ϕx, y0Ey,
ULCD2x, y; z=C2 sin ϕx, yEx0,
UWx, y; z=cos α-sin αsin αcos αexp-iπ200expiπ2×cos αsin α-sin αcos αULCD2x, y; z=±iC2 sin ϕx, y0Ex,
Usx, y; z=ULCD1x, y; z+UWx, y; z=0C2 cos ϕx, yEy±iC2 sin ϕx, yEx.
Usx, y; z=0C2E exp±iϕx, y.
Ux, y; z=-Usx, y; zexp-ik2zx-x2+y-y2dxdy.
Ix, y=Ux, y; z2.

Metrics