Abstract

A novel beam-steering device that makes use of a nematic liquid crystal (LC) is proposed and demonstrated. The beam-steering function is attained with a LC microlens with a divided hole-patterned electrode structure (DE-LC microlens). Optical properties of the DE-LC microlens are investigated and three-dimensional variable-focusing and beam-steering properties are verified experimentally for the first time, to our knowledge.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Firester, “Properties and fabrication of micro Fresnel zone plates,” Appl. Opt. 12, 1698–1702 (1973).
    [CrossRef] [PubMed]
  2. K. Iga, M. Oikawa, S. Misawa, J. Banno, Y. Kokubun, “Stacked planar optics: an application of the planar microlens array,” Appl. Opt. 21, 3456–3460 (1982).
    [CrossRef] [PubMed]
  3. Z. L. Liau, V. Diadink, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
    [CrossRef]
  4. D. Daly, R. F. Stevens, M. C. Hutley, N. Davis, “The manufacture of microlens by melting photoresist,” J. Meas. Sci. Techn. 1, 759–766 (1990).
    [CrossRef]
  5. S. T. Kowel, D. S. Cleverly, P. G. Kornreich, “Focusing by electrical modulation of refraction in liquid crystal cell,” Appl. Opt. 23, 278–289 (1984).
    [CrossRef]
  6. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 55, 97–99 (1982).
  7. G. D. Love, J. V. Major, A. Purvis, “Liquid crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
    [CrossRef] [PubMed]
  8. J. S. Patel, S-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with liquid crystal films,” Appl. Phys. Lett. 58, 2491 (1991).
    [CrossRef]
  9. Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
    [CrossRef]
  10. D. J. Broer, “Molecular architectures in thin plastic films by in-situ photopolymerization of reactive liquid crystals,” J. Soc. Inf. Display 3, 185–189 (1995).
    [CrossRef]
  11. H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceedings of 14th International Display Research Conference, Monterey, Calif., 10–13 October 1994, p. 161.
  12. S. Masuda, T. Nose, S. Sato, “Optical properties of a microlens using a UV curable liquid crystal material,” in Proceedings of 5th International Microoptics Conference, Hiroshima, Japan, 18–20 October 1995, pp. 180–183.
  13. T. Nose, S. Sato, “A liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
    [CrossRef]
  14. T. Nose, S. Masuda, S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
    [CrossRef]
  15. S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on the device and material parameters in a liquid crystal microlens,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
    [CrossRef]
  16. S. Masuda, H. Ito, T. Nose, S. Sato, “Optical properties of a liquid crystal microlens with a deflection function,” in Technical Digest of 1996 International Topical Meeting on Photonics in Switching, Sendai, Japan, 21–25 April 1996, pp. 114–115.

1996 (2)

Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on the device and material parameters in a liquid crystal microlens,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
[CrossRef]

1995 (1)

D. J. Broer, “Molecular architectures in thin plastic films by in-situ photopolymerization of reactive liquid crystals,” J. Soc. Inf. Display 3, 185–189 (1995).
[CrossRef]

1994 (1)

1992 (1)

T. Nose, S. Masuda, S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

1991 (1)

J. S. Patel, S-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with liquid crystal films,” Appl. Phys. Lett. 58, 2491 (1991).
[CrossRef]

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, N. Davis, “The manufacture of microlens by melting photoresist,” J. Meas. Sci. Techn. 1, 759–766 (1990).
[CrossRef]

1989 (2)

T. Nose, S. Sato, “A liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Z. L. Liau, V. Diadink, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

1984 (1)

1982 (2)

1973 (1)

Banno, J.

Broer, D. J.

D. J. Broer, “Molecular architectures in thin plastic films by in-situ photopolymerization of reactive liquid crystals,” J. Soc. Inf. Display 3, 185–189 (1995).
[CrossRef]

Cleverly, D. S.

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davis, “The manufacture of microlens by melting photoresist,” J. Meas. Sci. Techn. 1, 759–766 (1990).
[CrossRef]

Davis, N.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davis, “The manufacture of microlens by melting photoresist,” J. Meas. Sci. Techn. 1, 759–766 (1990).
[CrossRef]

Diadink, V.

Z. L. Liau, V. Diadink, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Firester, A. H.

Hasebe, H.

H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceedings of 14th International Display Research Conference, Monterey, Calif., 10–13 October 1994, p. 161.

He, Z.

Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
[CrossRef]

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davis, “The manufacture of microlens by melting photoresist,” J. Meas. Sci. Techn. 1, 759–766 (1990).
[CrossRef]

Iga, K.

Ito, H.

S. Masuda, H. Ito, T. Nose, S. Sato, “Optical properties of a liquid crystal microlens with a deflection function,” in Technical Digest of 1996 International Topical Meeting on Photonics in Switching, Sendai, Japan, 21–25 April 1996, pp. 114–115.

Kokubun, Y.

Kornreich, P. G.

Kowel, S. T.

Lee, S-D.

J. S. Patel, S-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with liquid crystal films,” Appl. Phys. Lett. 58, 2491 (1991).
[CrossRef]

Liau, Z. L.

Z. L. Liau, V. Diadink, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Love, G. D.

Major, J. V.

Masuda, S.

S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on the device and material parameters in a liquid crystal microlens,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
[CrossRef]

T. Nose, S. Masuda, S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Optical properties of a microlens using a UV curable liquid crystal material,” in Proceedings of 5th International Microoptics Conference, Hiroshima, Japan, 18–20 October 1995, pp. 180–183.

S. Masuda, H. Ito, T. Nose, S. Sato, “Optical properties of a liquid crystal microlens with a deflection function,” in Technical Digest of 1996 International Topical Meeting on Photonics in Switching, Sendai, Japan, 21–25 April 1996, pp. 114–115.

Misawa, S.

Mull, D. E.

Z. L. Liau, V. Diadink, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Nose, T.

S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on the device and material parameters in a liquid crystal microlens,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
[CrossRef]

Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
[CrossRef]

T. Nose, S. Masuda, S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

T. Nose, S. Sato, “A liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Optical properties of a microlens using a UV curable liquid crystal material,” in Proceedings of 5th International Microoptics Conference, Hiroshima, Japan, 18–20 October 1995, pp. 180–183.

S. Masuda, H. Ito, T. Nose, S. Sato, “Optical properties of a liquid crystal microlens with a deflection function,” in Technical Digest of 1996 International Topical Meeting on Photonics in Switching, Sendai, Japan, 21–25 April 1996, pp. 114–115.

Oikawa, M.

Patel, J. S.

J. S. Patel, S-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with liquid crystal films,” Appl. Phys. Lett. 58, 2491 (1991).
[CrossRef]

Purvis, A.

Sato, S.

Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on the device and material parameters in a liquid crystal microlens,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
[CrossRef]

T. Nose, S. Masuda, S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

T. Nose, S. Sato, “A liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 55, 97–99 (1982).

S. Masuda, T. Nose, S. Sato, “Optical properties of a microlens using a UV curable liquid crystal material,” in Proceedings of 5th International Microoptics Conference, Hiroshima, Japan, 18–20 October 1995, pp. 180–183.

S. Masuda, H. Ito, T. Nose, S. Sato, “Optical properties of a liquid crystal microlens with a deflection function,” in Technical Digest of 1996 International Topical Meeting on Photonics in Switching, Sendai, Japan, 21–25 April 1996, pp. 114–115.

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davis, “The manufacture of microlens by melting photoresist,” J. Meas. Sci. Techn. 1, 759–766 (1990).
[CrossRef]

Takatsu, H.

H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceedings of 14th International Display Research Conference, Monterey, Calif., 10–13 October 1994, p. 161.

Takeuchi, K.

H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceedings of 14th International Display Research Conference, Monterey, Calif., 10–13 October 1994, p. 161.

Walpole, J. N.

Z. L. Liau, V. Diadink, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. S. Patel, S-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with liquid crystal films,” Appl. Phys. Lett. 58, 2491 (1991).
[CrossRef]

Z. L. Liau, V. Diadink, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

J. Meas. Sci. Techn. (1)

D. Daly, R. F. Stevens, M. C. Hutley, N. Davis, “The manufacture of microlens by melting photoresist,” J. Meas. Sci. Techn. 1, 759–766 (1990).
[CrossRef]

J. Soc. Inf. Display (1)

D. J. Broer, “Molecular architectures in thin plastic films by in-situ photopolymerization of reactive liquid crystals,” J. Soc. Inf. Display 3, 185–189 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (4)

T. Nose, S. Masuda, S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on the device and material parameters in a liquid crystal microlens,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
[CrossRef]

Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 55, 97–99 (1982).

Liq. Cryst. (1)

T. Nose, S. Sato, “A liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Opt. Lett. (1)

Other (3)

S. Masuda, H. Ito, T. Nose, S. Sato, “Optical properties of a liquid crystal microlens with a deflection function,” in Technical Digest of 1996 International Topical Meeting on Photonics in Switching, Sendai, Japan, 21–25 April 1996, pp. 114–115.

H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceedings of 14th International Display Research Conference, Monterey, Calif., 10–13 October 1994, p. 161.

S. Masuda, T. Nose, S. Sato, “Optical properties of a microlens using a UV curable liquid crystal material,” in Proceedings of 5th International Microoptics Conference, Hiroshima, Japan, 18–20 October 1995, pp. 180–183.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Device structure of the DE-LC microlens: (a) hole-patterned electrode divided into two regions, and (b) hole-patterned electrode divided into four regions.

Fig. 2
Fig. 2

Schematic diagram of molecular orientation of a cross section of the DE-LC microlens at various voltage conditions.

Fig. 3
Fig. 3

Experimental setup to estimate the gradient-index profiles and beam-steering properties of the DE-LC microlens.

Fig. 4
Fig. 4

Interference fringes of the DE-LC microlens that is divided into two regions. The hole-patterned electrode deposited on the glass substrate was divided into two regions, where the voltage applied to both divided electrodes is 2.0 V (rms).

Fig. 5
Fig. 5

Gradient-index profiles of the DE-LC microlens for the various levels of applied voltage, where VL = VR.

Fig. 6
Fig. 6

Variable-focusing property of the DE-LC microlens.

Fig. 7
Fig. 7

Typical focusing property of the DE-LC microlens, where the applied voltage is 2.0 V (rms).

Fig. 8
Fig. 8

Interference fringes of the DE-LC microlens divided into two regions. The hole-patterned electrode was divided into two regions and the voltage applied to the divided electrodes was (a) 2.0 and 2.0 V (rms), (b) 1.8 and 2.0 V (rms), and (c) 2.0 and 2.2 V (rms).

Fig. 9
Fig. 9

Gradient-index profiles of a DE-LC microlens that is divided into two regions.

Fig. 10
Fig. 10

Typical focusing properties and shifts in the focusing positions of the DE-LC microlens, corresponding to the gradient-index profiles shown in Fig. 8.

Fig. 11
Fig. 11

Beam-deflection properties of the DE-LC microlens that is divided into two regions.

Fig. 12
Fig. 12

Relation between the peak intensity and the focal position of the DE-LC microlens.

Fig. 13
Fig. 13

Interference fringes of the DE-LC microlens that is divided into four regions, under various voltage conditions.

Fig. 14
Fig. 14

Beam-steering properties of the DE-LC microlens that is divided into four regions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d=1.22λNA,

Metrics