Abstract

A diffractive zone plate provides a highly linear wavelength-to-depth coding, allowing for nonmechanical depth scanning in a confocal microscope. This chromatic confocal microscope, constructed with 40× and 60× objectives, achieves axial position changes of 55 and 25 µm, respectively, for a wavelength tuning range of 100 nm. The corresponding longitudinal point-spread functions are measured and shown to possess full-width half-maximums of 2.52 and 2.23 µm, respectively. Two-dimensional profiles of a two-phase-level grating and a four-phase-level diffractive structure are given. The performance of the chromatic confocal microscope is consistent with that of the conventional confocal operation of the microscope.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, S. J. Hewlett, “Superresolution in confocal scanning microscopy,” Opt. Lett. 16, 1062–1064 (1991).
    [CrossRef] [PubMed]
  2. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  3. D. K. Hamilton, T. Wilson, C. J. R. Sheppard, “Experimental observations of depth-discrimination properties of scanning microscopes,” Opt. Lett. 6, 625–626 (1981).
    [CrossRef] [PubMed]
  4. G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
    [CrossRef]
  5. M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14, 145–153 (1992).
    [CrossRef]
  6. M. Maly, A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).
  7. M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
    [CrossRef]
  8. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995).
    [CrossRef]
  9. R. D. Guenther, Modern Optics (Wiley, New York, 1990).
  10. G. S. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” 854, (MIT, Cambridge, Mass., 1989).

1995

1994

M. Maly, A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).

1992

M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14, 145–153 (1992).
[CrossRef]

1991

1988

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

1984

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

1981

Akinyemi, O.

M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14, 145–153 (1992).
[CrossRef]

Boyde, A.

M. Maly, A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).

M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14, 145–153 (1992).
[CrossRef]

Browne, M. A.

M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14, 145–153 (1992).
[CrossRef]

Guenther, R. D.

R. D. Guenther, Modern Optics (Wiley, New York, 1990).

Hamilton, D. K.

Hewlett, S. J.

Hutley, M. C.

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

Mait, J. N.

Maly, M.

M. Maly, A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).

Molesini, G.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Pedrini, G.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Poggi, P.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Quercioli, F.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Sheppard, C.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Sheppard, C. J. R.

Stevens, R. F.

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

Swanson, G. S.

G. S. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” 854, (MIT, Cambridge, Mass., 1989).

Wilson, T.

J. Opt. Soc. Am. A

J. Phys. E

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

Opt. Commun.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Opt. Lett.

Scanning

M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14, 145–153 (1992).
[CrossRef]

M. Maly, A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).

Other

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

R. D. Guenther, Modern Optics (Wiley, New York, 1990).

G. S. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” 854, (MIT, Cambridge, Mass., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a chromatic confocal microscope with a DOE.

Fig. 2
Fig. 2

Experimental results of system characterization: wavelength-to-depth mapping.

Fig. 3
Fig. 3

Experimental results of the longitudinal PSF: chromatic confocal microscope with the (a) 40× objective, (c) 60× objective and the conventional confocal microscope operating at the design wavelength λd = 850 nm with the (b) 40× objective, (d) 60× objective.

Fig. 4
Fig. 4

Experimental results of measuring surface-relief profiles with the conventional (solid curves) and chromatic (dashed curves) confocal microscopes: (a) binary grating profile, (b) four-phase-level DOE. (The horizontal lines highlight the sample level positions.)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

fmλ=r12mλ,
fλ=fλdλdλ,
fλ=fλdλdλ=n=0-1nfλdλ-λdλdn.
fλfλd1-λ-λdλd=2fλd+2λdλdλ.
fλmm=500-0.294λnm
fλmm=498.11-0.292λnm
d40×λ=490.91-0.546λ,
d60×λ=226.33-0.252λ.

Metrics