Abstract

An integrated free-space optical interconnection system with 2500 parallel data channels is demonstrated. The design is based on a combination of microchannel imaging and conventional imaging. A modification of the hybrid imaging configuration allows one to achieve optimized image quality over large image fields.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–865 (1984).
    [CrossRef]
  2. A. Huang, “Architectural considerations involved in the design of an optical digital computer,” Proc. IEEE 72, 780–786 (1984).
    [CrossRef]
  3. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
    [CrossRef]
  4. H. S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Selected Areas Commun. 6, 1209–1226 (1988).
    [CrossRef]
  5. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodmann, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 90–96.
  6. F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
    [CrossRef]
  7. F. B. McCormick, “Free space optical interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, Boston, 1993).
  8. J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 106, 328–337 (1994).
    [CrossRef]
  9. S. Sinzinger, J. Jahns, “Variations of the hybrid imaging concept for optical computing applications,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 183–185.
  10. F. A. P. Tooley, S. M. Prince, M. R. Taghizadeh, F. B. McCormick, M. W. Derstine, S. Wakelin, “Implementation of a hybrid lens,” Appl. Opt. 34, 6471–6480 (1995).
    [CrossRef] [PubMed]
  11. R. L. Morrison, “An extensible, diffractive optic system for interconnecting opto-electronic device arrays,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 80–82.
  12. J. Jahns, A. Huang, “Planar integration of free space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  13. J. Jahns, B. Acklin, “Integrated planar optical imaging system with high interconnection density,” Opt. Lett. 18, 1594–1596 (1993).
    [CrossRef] [PubMed]
  14. S. Sinzinger, V. Harrison, “High-efficiency detour-phase holograms,” Opt. Lett. 22, 928–930 (1997).
    [CrossRef] [PubMed]
  15. Z. Zhou, T. J. Drabik, “Coplanar refractive–diffractive doublets for optoelectronic integrated systems,” Appl. Opt. 34, 3048–3054 (1995).
    [CrossRef] [PubMed]
  16. M. C. Hutley, P. Savander, M. Schrader, “The use of microlenses for making spatially variant optical interconnections,” Pure Appl. Opt. 1, 337–346 (1992).
    [CrossRef]
  17. S. Sinzinger, J. Jahns, “Planar optics for optical interconnections in computers,” in Proceedings of the 1996 International Topical Meetings on Optical Computing and Photonics in Switching (Optical Society of America, Washington, D.C., 1996), pp. 20–21.
  18. B. Lunitz, J. Jahns, “Tolerant design of a planar optical clock distribution system,” Opt. Commun. 134, 281–288 (1997).
    [CrossRef]
  19. J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
    [CrossRef]
  20. K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).
    [CrossRef]
  21. N. Streibl, R. Völkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1992).
    [CrossRef]
  22. A. W. Lohmann, “What classical optics can do for the optical computer,” Appl. Opt. 25, 1543–1549 (1986).
    [CrossRef]

1997

S. Sinzinger, V. Harrison, “High-efficiency detour-phase holograms,” Opt. Lett. 22, 928–930 (1997).
[CrossRef] [PubMed]

B. Lunitz, J. Jahns, “Tolerant design of a planar optical clock distribution system,” Opt. Commun. 134, 281–288 (1997).
[CrossRef]

1995

1994

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 106, 328–337 (1994).
[CrossRef]

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).
[CrossRef]

1993

1992

N. Streibl, R. Völkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1992).
[CrossRef]

M. C. Hutley, P. Savander, M. Schrader, “The use of microlenses for making spatially variant optical interconnections,” Pure Appl. Opt. 1, 337–346 (1992).
[CrossRef]

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

1991

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[CrossRef]

1989

1988

H. S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Selected Areas Commun. 6, 1209–1226 (1988).
[CrossRef]

1986

1984

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–865 (1984).
[CrossRef]

A. Huang, “Architectural considerations involved in the design of an optical digital computer,” Proc. IEEE 72, 780–786 (1984).
[CrossRef]

Acklin, B.

Athale, R. A.

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–865 (1984).
[CrossRef]

Brenner, K.-H.

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).
[CrossRef]

Brown-Goebeler, K. F.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 106, 328–337 (1994).
[CrossRef]

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodmann, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 90–96.

Derstine, M. W.

Drabik, T. J.

Eckert, W.

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).
[CrossRef]

Feldblum, A. Y.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 106, 328–337 (1994).
[CrossRef]

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–865 (1984).
[CrossRef]

Habel, P.

N. Streibl, R. Völkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1992).
[CrossRef]

Harrison, V.

Hinton, H. S.

H. S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Selected Areas Commun. 6, 1209–1226 (1988).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodmann, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 90–96.

Huang, A.

J. Jahns, A. Huang, “Planar integration of free space optical components,” Appl. Opt. 28, 1602–1605 (1989).
[CrossRef] [PubMed]

A. Huang, “Architectural considerations involved in the design of an optical digital computer,” Proc. IEEE 72, 780–786 (1984).
[CrossRef]

Hutley, M. C.

M. C. Hutley, P. Savander, M. Schrader, “The use of microlenses for making spatially variant optical interconnections,” Pure Appl. Opt. 1, 337–346 (1992).
[CrossRef]

Jahns, J.

B. Lunitz, J. Jahns, “Tolerant design of a planar optical clock distribution system,” Opt. Commun. 134, 281–288 (1997).
[CrossRef]

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 106, 328–337 (1994).
[CrossRef]

J. Jahns, B. Acklin, “Integrated planar optical imaging system with high interconnection density,” Opt. Lett. 18, 1594–1596 (1993).
[CrossRef] [PubMed]

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

J. Jahns, A. Huang, “Planar integration of free space optical components,” Appl. Opt. 28, 1602–1605 (1989).
[CrossRef] [PubMed]

S. Sinzinger, J. Jahns, “Variations of the hybrid imaging concept for optical computing applications,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 183–185.

S. Sinzinger, J. Jahns, “Planar optics for optical interconnections in computers,” in Proceedings of the 1996 International Topical Meetings on Optical Computing and Photonics in Switching (Optical Society of America, Washington, D.C., 1996), pp. 20–21.

Kung, S.

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–865 (1984).
[CrossRef]

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–865 (1984).
[CrossRef]

Lindlein, N.

N. Streibl, R. Völkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1992).
[CrossRef]

Lohmann, A. W.

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[CrossRef]

A. W. Lohmann, “What classical optics can do for the optical computer,” Appl. Opt. 25, 1543–1549 (1986).
[CrossRef]

Lunitz, B.

B. Lunitz, J. Jahns, “Tolerant design of a planar optical clock distribution system,” Opt. Commun. 134, 281–288 (1997).
[CrossRef]

McCormick, F. B.

F. A. P. Tooley, S. M. Prince, M. R. Taghizadeh, F. B. McCormick, M. W. Derstine, S. Wakelin, “Implementation of a hybrid lens,” Appl. Opt. 34, 6471–6480 (1995).
[CrossRef] [PubMed]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodmann, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 90–96.

F. B. McCormick, “Free space optical interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, Boston, 1993).

Morgan, R. A.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Morrison, R. L.

R. L. Morrison, “An extensible, diffractive optic system for interconnecting opto-electronic device arrays,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 80–82.

Nguyen, H. N.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Nijander, C. R.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 106, 328–337 (1994).
[CrossRef]

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

Passon, C.

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).
[CrossRef]

Prince, S. M.

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodmann, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 90–96.

Sauer, F.

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 106, 328–337 (1994).
[CrossRef]

Savander, P.

M. C. Hutley, P. Savander, M. Schrader, “The use of microlenses for making spatially variant optical interconnections,” Pure Appl. Opt. 1, 337–346 (1992).
[CrossRef]

Schrader, M.

M. C. Hutley, P. Savander, M. Schrader, “The use of microlenses for making spatially variant optical interconnections,” Pure Appl. Opt. 1, 337–346 (1992).
[CrossRef]

Schwider, J.

N. Streibl, R. Völkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1992).
[CrossRef]

Sinzinger, S.

S. Sinzinger, V. Harrison, “High-efficiency detour-phase holograms,” Opt. Lett. 22, 928–930 (1997).
[CrossRef] [PubMed]

S. Sinzinger, J. Jahns, “Planar optics for optical interconnections in computers,” in Proceedings of the 1996 International Topical Meetings on Optical Computing and Photonics in Switching (Optical Society of America, Washington, D.C., 1996), pp. 20–21.

S. Sinzinger, J. Jahns, “Variations of the hybrid imaging concept for optical computing applications,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 183–185.

Streibl, N.

N. Streibl, R. Völkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1992).
[CrossRef]

Taghizadeh, M. R.

Tell, B.

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 106, 328–337 (1994).
[CrossRef]

Tooley, F. A. P.

F. A. P. Tooley, S. M. Prince, M. R. Taghizadeh, F. B. McCormick, M. W. Derstine, S. Wakelin, “Implementation of a hybrid lens,” Appl. Opt. 34, 6471–6480 (1995).
[CrossRef] [PubMed]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodmann, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 90–96.

Townsend, W. P.

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 106, 328–337 (1994).
[CrossRef]

Völkel, R.

N. Streibl, R. Völkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1992).
[CrossRef]

Wakelin, S.

Walker, J. A.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Walker, S. J.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Wong, Y. M.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Zhou, Z.

Appl. Opt.

IEEE J. Selected Areas Commun.

H. S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Selected Areas Commun. 6, 1209–1226 (1988).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Opt. Commun.

N. Streibl, R. Völkel, J. Schwider, P. Habel, N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1992).
[CrossRef]

J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 106, 328–337 (1994).
[CrossRef]

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[CrossRef]

B. Lunitz, J. Jahns, “Tolerant design of a planar optical clock distribution system,” Opt. Commun. 134, 281–288 (1997).
[CrossRef]

Opt. Eng.

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

Opt. Laser Technol.

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).
[CrossRef]

Opt. Lett.

Proc. IEEE

J. W. Goodman, F. J. Leonberger, S. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–865 (1984).
[CrossRef]

A. Huang, “Architectural considerations involved in the design of an optical digital computer,” Proc. IEEE 72, 780–786 (1984).
[CrossRef]

Pure Appl. Opt.

M. C. Hutley, P. Savander, M. Schrader, “The use of microlenses for making spatially variant optical interconnections,” Pure Appl. Opt. 1, 337–346 (1992).
[CrossRef]

Other

S. Sinzinger, J. Jahns, “Planar optics for optical interconnections in computers,” in Proceedings of the 1996 International Topical Meetings on Optical Computing and Photonics in Switching (Optical Society of America, Washington, D.C., 1996), pp. 20–21.

R. L. Morrison, “An extensible, diffractive optic system for interconnecting opto-electronic device arrays,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 80–82.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton, J. W. Goodmann, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 90–96.

F. B. McCormick, “Free space optical interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, Boston, 1993).

S. Sinzinger, J. Jahns, “Variations of the hybrid imaging concept for optical computing applications,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 183–185.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Imaging setups for the implementation of optical interconnects (I’s, input arrays; O’s, detector arrays; L1 and L2, imaging lenses with focal length F and diameter D): (a) conventional 4F imaging, (b) hybrid imaging (A1, A2, uniform arrays of microlenses with focal length f and diameter d).

Fig. 2
Fig. 2

Additional degrees of freedom that are used for the optimization of the imaging quality: (a) deflection angle introduced by the individual microlenses, (b) variable focal lengths of the individual microlenses.

Fig. 3
Fig. 3

Optimized 2F/2F hybrid imaging system with deflecting microlens arrays A1 and A2 and one field lens L with focal length F.

Fig. 4
Fig. 4

Schematic of the experiment that demonstrates the planar optical imaging setup with 2500 parallel data channels (A1, A2, optimized microlens arrays; L, imaging lens; substrate thickness t = 6 mm; interconnection length s = 8.6 mm).

Fig. 5
Fig. 5

Schematic of the input array of 50 × 50 microlenses marking the actually implemented channels.

Fig. 6
Fig. 6

Multiple-exposure photographs of the images of the fiber tip, imaged sequentially by (a) two channels in the center of the planar optical imaging system, (b) three channels at the edge of the image field.

Fig. 7
Fig. 7

One-dimensional intensity distribution of one of the focal spots shown in Fig. 6.

Fig. 8
Fig. 8

Hybrid imaging configuration in which a three-lens light pipe is used for the imaging between the planes of the microlens arrays.

Fig. 9
Fig. 9

Ray-tracing simulations of the system tolerances to variations of the design parameters (dashed line, 4F system; solid line, light-pipe system). The lateral shift of the beam in the output pupil is due to (a) wavelength deviations, (b) variation of the substrate thickness, (c) wedge angle between the substrate surfaces.

Fig. 10
Fig. 10

Schematic of a hybrid 2F/2F configuration with divided pupil.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

fxn=zon-0.52d2+4Fx21/2zo+n-0.52d2+4Fx21/2,
fym=zom-0.52d2+4Fy21/2zo+m-0.52d2+4Fy21/2.
Dx=Nx24d2+4Fx21/22λd.
η=ηR7ηc2ηLηF2=3.75%.
ΔxNxd+λdNx2d2+4t21/2.
tanαx=Δx2t.
sinαmax=λnLwmin,
αy=arctanNy/2/d2t.

Metrics