Abstract

We present a method for reproducing diffractive optical elements in quantity. The method is compatible with VLSI microfabrication techniques and involves generating a gray-scale mask. The gray-scale mask is employed in an optical aligner to expose an analog photoresist on any environmentally durable substrate, e.g., glass, quartz, semiconductor, or metal, one exposure for each diffractive optical element. After copies of the mask on the photoresist are developed, many substrates can be processed in parallel in a chemically assisted ion-beam etcher to transfer the microstructures on the analog resists simultaneously onto the surfaces of the substrates.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Chen, J. S. Anderson, “Imaging by diffraction: grating design and hardware results,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 77–97.
  2. T. A. Fritz, A. Cox, “Diffractive optics for broadband infrared imagers: design examples,” in Holographic Optics: Optically and Computer Generated, I. Cindrich, S. H. Lee, eds., Proc. SPIE1052, 25–31 (1989).
    [CrossRef]
  3. S. H. Lee, “Recent advances in computer generated holograms,” Opt. Photon. News 1(7) 18–22 (1990).
    [CrossRef]
  4. Y. Opplinger, P. Sixt, J. M. Stauffer, J. Mayor, P. Regnault, G. Voinin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
    [CrossRef]
  5. H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nilsson, “Single photomask multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 29, 4259–4267 (1990).
    [CrossRef] [PubMed]
  6. W. Dächner, P. Long, M. Larsson, S. H. Lee. “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
    [CrossRef]
  7. “HEBS-glass photomask blanks,” Product Information 94-88, Canyon Materials, Inc., 6665 Nancy Ridge Dr., San Diego, Calif., 92121.
  8. C. Wu “Method of making high energy beam sensitive glasses,” U.S. Patent5,078,771 (7January1992).
  9. “CM200 laser beam direct write all glass photomask blanks,” Product Information, Canyon Materials, Inc., 6665 Nancy Ridge Dr., San Diego, Calif., 92121.
  10. W. Däschner, M. Larsson, S. H. Lee, “Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step,” Appl. Opt. 34, 2534–2539 (1995).
    [CrossRef] [PubMed]
  11. G. J. Swanson, “Binary optics technology: the theory and design of multi-level phase diffractive optical elements,” (MIT, Cambridge, Mass., 1989).
  12. J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
    [CrossRef] [PubMed]
  13. L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
    [CrossRef]
  14. M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992).
    [CrossRef]
  15. M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
    [CrossRef]
  16. D. W. Ricks, “Scattering from diffractive optics,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Review Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 187–211.
  17. G. Blough, M. Morris, “Hybrid lenses offer high performance at low cost,” Laser Focus World 31(11) 67–74 (1995).
  18. M. Feldman “Practical diffractive optics for laser diodes for commercial applications,” presentation MGG1, presented at OSA ’95 Annual Meeting, Portland, Ore., 10–15 September 1995.
  19. K. Urquhart, S. H. Lee, C. C. Guest, M. R. Feldman, H. Farhoosh, “Computer aided design of computer generated holograms for electron beam fabrication,” Appl. Opt. 28, 3387–3396 (1989).
    [CrossRef] [PubMed]
  20. J. Fan, D. Zaleta, K. Urquhart, S. H. Lee, “Efficient encoding algorithms for computer-aided design of diffractive optical elements by the use of electron-beam fabrication,” Appl. Opt. 34, 2522–2533 (1995).
    [CrossRef] [PubMed]

1995

1994

Y. Opplinger, P. Sixt, J. M. Stauffer, J. Mayor, P. Regnault, G. Voinin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

1992

M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992).
[CrossRef]

1991

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

1990

1989

1972

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Anderson, J. S.

C. W. Chen, J. S. Anderson, “Imaging by diffraction: grating design and hardware results,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 77–97.

Andersson, H.

Blough, G.

G. Blough, M. Morris, “Hybrid lenses offer high performance at low cost,” Laser Focus World 31(11) 67–74 (1995).

Chen, C. W.

C. W. Chen, J. S. Anderson, “Imaging by diffraction: grating design and hardware results,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 77–97.

Cox, A.

T. A. Fritz, A. Cox, “Diffractive optics for broadband infrared imagers: design examples,” in Holographic Optics: Optically and Computer Generated, I. Cindrich, S. H. Lee, eds., Proc. SPIE1052, 25–31 (1989).
[CrossRef]

D’Auria, L.

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Dächner, W.

W. Dächner, P. Long, M. Larsson, S. H. Lee. “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
[CrossRef]

Däschner, W.

Ekberg, M.

Fan, J.

Farhoosh, H.

Feldman, M.

M. Feldman “Practical diffractive optics for laser diodes for commercial applications,” presentation MGG1, presented at OSA ’95 Annual Meeting, Portland, Ore., 10–15 September 1995.

Feldman, M. R.

Fritz, T. A.

T. A. Fritz, A. Cox, “Diffractive optics for broadband infrared imagers: design examples,” in Holographic Optics: Optically and Computer Generated, I. Cindrich, S. H. Lee, eds., Proc. SPIE1052, 25–31 (1989).
[CrossRef]

Guest, C. C.

Hård, S.

Holz, M.

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Huignard, J. P.

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Jacobsson, S.

Jahns, J.

Knowlden, R. E.

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Larsson, M.

Lee, S. H.

Long, P.

W. Dächner, P. Long, M. Larsson, S. H. Lee. “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
[CrossRef]

Mayor, J.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. Mayor, P. Regnault, G. Voinin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Medeiros, S. S.

M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992).
[CrossRef]

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Morris, M.

G. Blough, M. Morris, “Hybrid lenses offer high performance at low cost,” Laser Focus World 31(11) 67–74 (1995).

Nilsson, T.

Opplinger, Y.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. Mayor, P. Regnault, G. Voinin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Regnault, P.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. Mayor, P. Regnault, G. Voinin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Ricks, D. W.

D. W. Ricks, “Scattering from diffractive optics,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Review Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 187–211.

Roy, A. M.

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Sixt, P.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. Mayor, P. Regnault, G. Voinin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Spitz, E.

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Stauffer, J. M.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. Mayor, P. Regnault, G. Voinin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Stern, M. B.

M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992).
[CrossRef]

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Swanson, G. J.

G. J. Swanson, “Binary optics technology: the theory and design of multi-level phase diffractive optical elements,” (MIT, Cambridge, Mass., 1989).

Urquhart, K.

Voinin, G.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. Mayor, P. Regnault, G. Voinin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Walker, S. J.

Wu, C.

C. Wu “Method of making high energy beam sensitive glasses,” U.S. Patent5,078,771 (7January1992).

Zaleta, D.

Appl. Opt.

J. Vac. Sci. Technol. B

M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992).
[CrossRef]

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

W. Dächner, P. Long, M. Larsson, S. H. Lee. “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
[CrossRef]

Laser Focus World

G. Blough, M. Morris, “Hybrid lenses offer high performance at low cost,” Laser Focus World 31(11) 67–74 (1995).

Microelectron. Eng.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. Mayor, P. Regnault, G. Voinin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Opt. Commun.

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Opt. Photon. News

S. H. Lee, “Recent advances in computer generated holograms,” Opt. Photon. News 1(7) 18–22 (1990).
[CrossRef]

Other

C. W. Chen, J. S. Anderson, “Imaging by diffraction: grating design and hardware results,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 77–97.

T. A. Fritz, A. Cox, “Diffractive optics for broadband infrared imagers: design examples,” in Holographic Optics: Optically and Computer Generated, I. Cindrich, S. H. Lee, eds., Proc. SPIE1052, 25–31 (1989).
[CrossRef]

“HEBS-glass photomask blanks,” Product Information 94-88, Canyon Materials, Inc., 6665 Nancy Ridge Dr., San Diego, Calif., 92121.

C. Wu “Method of making high energy beam sensitive glasses,” U.S. Patent5,078,771 (7January1992).

“CM200 laser beam direct write all glass photomask blanks,” Product Information, Canyon Materials, Inc., 6665 Nancy Ridge Dr., San Diego, Calif., 92121.

G. J. Swanson, “Binary optics technology: the theory and design of multi-level phase diffractive optical elements,” (MIT, Cambridge, Mass., 1989).

M. Feldman “Practical diffractive optics for laser diodes for commercial applications,” presentation MGG1, presented at OSA ’95 Annual Meeting, Portland, Ore., 10–15 September 1995.

D. W. Ricks, “Scattering from diffractive optics,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Review Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 187–211.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical density of HEBS material after exposure with 20-kV e-beam acceleration voltage.

Fig. 2
Fig. 2

Optical density of HEBS material after exposure with 30-kV e-beam acceleration voltage.

Fig. 3
Fig. 3

Resist thickness versus electron dosage used to expose the gray-scale mask. The resist was exposed in an optical contact aligner.

Fig. 4
Fig. 4

Overview of the HEBS-glass gray-scale mask fabrication process.

Fig. 5
Fig. 5

Resist profile trace.

Fig. 6
Fig. 6

DOE profile trace.

Fig. 7
Fig. 7

Optical micrograph of the gray-scale mask with DOE test structures.

Fig. 8
Fig. 8

Scanning electron micrograph of a DOE fabricated in a quartz substrate.

Metrics