Abstract

We describe a method of fabricating multilevel diffractive optics by excimer laser ablation. A portion of a chrome mask containing many patterns is illuminated by 193-nm laser light and imaged by an objective lens onto a poly(imide) substrate. Ablation of an entire single pattern is achieved in a single laser pulse. Multiple pulses are used to vary the ablation depth, and multiple patterns are used to create a variety of multilevel optics. We have successfully fabricated arrays of eight-level diffractive microlenses with varying focal lengths and decenters. The optics performed with diffraction-limited focusing and near-theoretical diffraction efficiency (92%).

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic wavefront correction of a gain-guided laser diode array using diffractive microlenses,” in Computer Generated Holography II, S. H. Lee, ed., Proc. SPIE884, 82–89 (1988).
  2. T. Werner, J. A. Cox, S. Swanson, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
    [CrossRef]
  3. P. J. Marchand, F. B. McCormick, S. C. Esener, “Diffractive optics in free-space optoelectronic computing systems, in Diffractive Optics and Micro-optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 64–66.
  4. L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
    [CrossRef]
  5. K. S. Urquhart, S. H. Lee, C. C. Guest, M. R. Feldman, H. Farhoosh, “Computer aided design of computer generated holograms for electron beam fabrication,” Appl. Opt. 28, 3387–3396 (1989).
    [CrossRef] [PubMed]
  6. W. Goltsos, S. Liu, A. Sharlene, “Polar coordinate laser writer for binary optics fabrication,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 137–147 (1990).
    [CrossRef]
  7. T. Fujita, H. Nishihara, J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7, 578–580 (1982).
    [CrossRef] [PubMed]
  8. M. T. Gale, M. Rossi, H. Schutz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” in Laser-Assisted Fabrication of Thin Films and Microstructures, I. Boyd, ed., Proc. SPIE2045, 54–62 (1994).
    [CrossRef]
  9. M. T. Duignan, “Micromachining of diffractive optics with excimer lasers,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 129–132.
  10. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]

1989 (1)

1982 (2)

1972 (1)

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Bundman, P.

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic wavefront correction of a gain-guided laser diode array using diffractive microlenses,” in Computer Generated Holography II, S. H. Lee, ed., Proc. SPIE884, 82–89 (1988).

Cox, J. A.

T. Werner, J. A. Cox, S. Swanson, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
[CrossRef]

d’Auria, L.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Duignan, M. T.

M. T. Duignan, “Micromachining of diffractive optics with excimer lasers,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 129–132.

Esener, S. C.

P. J. Marchand, F. B. McCormick, S. C. Esener, “Diffractive optics in free-space optoelectronic computing systems, in Diffractive Optics and Micro-optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 64–66.

Farhoosh, H.

Feldman, M. R.

Fujita, T.

Gale, M. T.

M. T. Gale, M. Rossi, H. Schutz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” in Laser-Assisted Fabrication of Thin Films and Microstructures, I. Boyd, ed., Proc. SPIE2045, 54–62 (1994).
[CrossRef]

Gaylord, T. K.

Goltsos, W.

W. Goltsos, S. Liu, A. Sharlene, “Polar coordinate laser writer for binary optics fabrication,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 137–147 (1990).
[CrossRef]

Griswold, M. P.

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic wavefront correction of a gain-guided laser diode array using diffractive microlenses,” in Computer Generated Holography II, S. H. Lee, ed., Proc. SPIE884, 82–89 (1988).

Guest, C. C.

Huignard, J. P.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Koyama, J.

Lee, S. H.

Leger, J. R.

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic wavefront correction of a gain-guided laser diode array using diffractive microlenses,” in Computer Generated Holography II, S. H. Lee, ed., Proc. SPIE884, 82–89 (1988).

Liu, S.

W. Goltsos, S. Liu, A. Sharlene, “Polar coordinate laser writer for binary optics fabrication,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 137–147 (1990).
[CrossRef]

Marchand, P. J.

P. J. Marchand, F. B. McCormick, S. C. Esener, “Diffractive optics in free-space optoelectronic computing systems, in Diffractive Optics and Micro-optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 64–66.

McCormick, F. B.

P. J. Marchand, F. B. McCormick, S. C. Esener, “Diffractive optics in free-space optoelectronic computing systems, in Diffractive Optics and Micro-optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 64–66.

Moharam, M. G.

Nishihara, H.

Rossi, M.

M. T. Gale, M. Rossi, H. Schutz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” in Laser-Assisted Fabrication of Thin Films and Microstructures, I. Boyd, ed., Proc. SPIE2045, 54–62 (1994).
[CrossRef]

Roy, A. M.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Schutz, H.

M. T. Gale, M. Rossi, H. Schutz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” in Laser-Assisted Fabrication of Thin Films and Microstructures, I. Boyd, ed., Proc. SPIE2045, 54–62 (1994).
[CrossRef]

Scott, M. L.

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic wavefront correction of a gain-guided laser diode array using diffractive microlenses,” in Computer Generated Holography II, S. H. Lee, ed., Proc. SPIE884, 82–89 (1988).

Sharlene, A.

W. Goltsos, S. Liu, A. Sharlene, “Polar coordinate laser writer for binary optics fabrication,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 137–147 (1990).
[CrossRef]

Spitz, E.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Swanson, S.

T. Werner, J. A. Cox, S. Swanson, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
[CrossRef]

Urquhart, K. S.

Werner, T.

T. Werner, J. A. Cox, S. Swanson, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Opt. Lett. (1)

Other (6)

W. Goltsos, S. Liu, A. Sharlene, “Polar coordinate laser writer for binary optics fabrication,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 137–147 (1990).
[CrossRef]

M. T. Gale, M. Rossi, H. Schutz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” in Laser-Assisted Fabrication of Thin Films and Microstructures, I. Boyd, ed., Proc. SPIE2045, 54–62 (1994).
[CrossRef]

M. T. Duignan, “Micromachining of diffractive optics with excimer lasers,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 129–132.

J. R. Leger, M. L. Scott, P. Bundman, M. P. Griswold, “Astigmatic wavefront correction of a gain-guided laser diode array using diffractive microlenses,” in Computer Generated Holography II, S. H. Lee, ed., Proc. SPIE884, 82–89 (1988).

T. Werner, J. A. Cox, S. Swanson, “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. Veldkamp, eds., Proc. SPIE1544, 46–57 (1991).
[CrossRef]

P. J. Marchand, F. B. McCormick, S. C. Esener, “Diffractive optics in free-space optoelectronic computing systems, in Diffractive Optics and Micro-optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 64–66.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the excimer laser ablation system. M’s, mirrors.

Fig. 2
Fig. 2

Atomic force microscope measurement of (a) ablated, (b) unablated poly(imide) surface, made with 193-nm excimer laser pulses. The surface roughness for a sample area of ∼12 µm × 21 µm is shown by the box histogram.

Fig. 3
Fig. 3

Trace from the atomic force microscope measurement of a portion of a two-level structure ablated from a Fresnel zone plate, showing the sidewall quality of the ablation method when 193-nm pulses are used.

Fig. 4
Fig. 4

(a) Microscope picture of an eight-level f/4.5 diffractive lens fabricated with a 193-nm excimer laser in poly(imide). Its diffraction efficiency is 92%. (b) Photomicrograph of a lens array.

Fig. 5
Fig. 5

Measured diffraction efficiency for different lens offset positions.

Fig. 6
Fig. 6

Comparison of measured (diamonds) and calculated (solid and dashed curves) intensity distributions in the x direction at the focus. The solid curve corresponds to the calculations that include the instrumental resolution, and the dashed curve corresponds to the ideal diffraction pattern.

Metrics