Abstract

High-fidelity diffractive surfaces have been generated with single-point diamond-turning techniques. A key to the success of this technique is the ability to shape the diamond tool tip to provide the optimum phase-relief profile, given manufacturing constraints. Replication technology is used to transfer the phase-relief surface into a thin epoxy or photopolymer layer on a glass substrate. Diffraction efficiency results for a wide range of zone widths are presented to provide the reader with a baseline of expected performance for replicated visible and near-infrared diffractive optical elements. In addition, a new method for analyzing diffractive surface structures is presented. The ray-trace algorithm quickly provides accurate results of predicted diffraction efficiency for arbitrary zone profiles, which is extremely valuable in predicting manufacturing errors.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Stone, N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
    [CrossRef] [PubMed]
  2. Apochromatic Hybrid Doublets, Melles Griot Corporation, Irvine, Calif.
  3. See, for example, D. Stephenson, “Diffractive optical elements simplify scanning systems,” LFW 6, 75–80 (1995); J. S. Anderson, C. W. Chen, R. A. Spande, “Thermal weapon sight (TWS) AN/PAS-13 diffractive optics designed for producibility,” NASA Conf. Pub.3227, (NASA, Greenbelt, Md., 1993), pp. 303–324; C. J. Shackelford, X. Ning, “Design of plastic diffractive/refractive hybrid lenses for CCD cameras,” and in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds. Proc. SPIE2600, 100–105 (1995).
  4. D. A. Buralli, G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992).
    [CrossRef] [PubMed]
  5. M. Rossi, C. G. Blough, D. H. Raguin, E. K. Popov, D. Maystre, “Diffraction efficiency of high-NA continuous-relief diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 233–236.
  6. D. A. Buralli, G. M. Morris, J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28, 976–983 (1989).
    [CrossRef] [PubMed]
  7. T. Fujita, H. Nishihara, J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7, 578–580 (1982).
    [CrossRef] [PubMed]
  8. M. B. Stern, H. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
    [CrossRef]
  9. M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
    [CrossRef]
  10. W. Daschner, M. Larsson, S. H. Lee, “Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemical assisted ion-beam-etching step,” Appl. Opt. 34, 2534–2539 (1995).
    [CrossRef]
  11. See, for example, M. J. Riedl, “Diamond-turned diffractive optical elements for the infrared,” in Broadband Networks: Strategies and Technologies, R. A. Cryan, P. N. Fernando, P. Ghiggino, J. M. Senior, eds., Proc. SPIE2540, 257 (1995); P. P. Clark, C. Londono, “Production of kinoforms by single-point diamond machining,” Opt. News (12), 39–40 (12/1989).
  12. T. T. Saito, “Diamond turning of optics: The past, the present, and the exciting future” Opt. Eng. 17, 570–573 (1978).
    [CrossRef]
  13. For example, Allen-Bradley Model 8200.
  14. See, for example, Precitech Ultrapath Controller, Precitech, Inc. and Nanopath Controller, Rank Pneumo, Inc.
  15. See, for example, C. G. Blough, D. Faklis, S. K. Mack, R. L. Michaels, S. J. Ward, “High-efficiency replicated diffractive optics,” in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds., Proc. SPIE2600, 50–55 (1995); C. G. Blough, S. K. Mack, R. L. Michaels, M. Rossi, “Diamond turning and replication of high-efficiency diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 342–345.
  16. E. Noponen, J. Turunen, A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993).
    [CrossRef]
  17. D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
    [CrossRef]
  18. M. Rossi, R. E. Kunz, H. P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996–6007 (1995).
    [CrossRef] [PubMed]
  19. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” 914 (MIT, Cambridge, Mass., 1991).
  20. D. Maystre, “A new general integral theory for dielectric coated gratings,” J. Opt. Soc. Am. 60, 490–495 (1978).
    [CrossRef]
  21. See, for example, D. Faklis, G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).

1995 (4)

See, for example, D. Stephenson, “Diffractive optical elements simplify scanning systems,” LFW 6, 75–80 (1995); J. S. Anderson, C. W. Chen, R. A. Spande, “Thermal weapon sight (TWS) AN/PAS-13 diffractive optics designed for producibility,” NASA Conf. Pub.3227, (NASA, Greenbelt, Md., 1993), pp. 303–324; C. J. Shackelford, X. Ning, “Design of plastic diffractive/refractive hybrid lenses for CCD cameras,” and in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds. Proc. SPIE2600, 100–105 (1995).

W. Daschner, M. Larsson, S. H. Lee, “Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemical assisted ion-beam-etching step,” Appl. Opt. 34, 2534–2539 (1995).
[CrossRef]

M. Rossi, R. E. Kunz, H. P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996–6007 (1995).
[CrossRef] [PubMed]

See, for example, D. Faklis, G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).

1994 (2)

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

1993 (1)

1992 (1)

1991 (1)

M. B. Stern, H. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

1989 (1)

1988 (1)

1982 (1)

1978 (2)

T. T. Saito, “Diamond turning of optics: The past, the present, and the exciting future” Opt. Eng. 17, 570–573 (1978).
[CrossRef]

D. Maystre, “A new general integral theory for dielectric coated gratings,” J. Opt. Soc. Am. 60, 490–495 (1978).
[CrossRef]

Blough, C. G.

M. Rossi, C. G. Blough, D. H. Raguin, E. K. Popov, D. Maystre, “Diffraction efficiency of high-NA continuous-relief diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 233–236.

See, for example, C. G. Blough, D. Faklis, S. K. Mack, R. L. Michaels, S. J. Ward, “High-efficiency replicated diffractive optics,” in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds., Proc. SPIE2600, 50–55 (1995); C. G. Blough, S. K. Mack, R. L. Michaels, M. Rossi, “Diamond turning and replication of high-efficiency diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 342–345.

Buralli, D. A.

Daschner, W.

Faklis, D.

See, for example, D. Faklis, G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).

See, for example, C. G. Blough, D. Faklis, S. K. Mack, R. L. Michaels, S. J. Ward, “High-efficiency replicated diffractive optics,” in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds., Proc. SPIE2600, 50–55 (1995); C. G. Blough, S. K. Mack, R. L. Michaels, M. Rossi, “Diamond turning and replication of high-efficiency diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 342–345.

Fujita, T.

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

George, N.

Grann, E. B.

Herzig, H. P.

Holz, H.

M. B. Stern, H. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Knowlden, R. E.

M. B. Stern, H. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Koyama, J.

Kunz, R. E.

Larsson, M.

Lee, S. H.

Mack, S. K.

See, for example, C. G. Blough, D. Faklis, S. K. Mack, R. L. Michaels, S. J. Ward, “High-efficiency replicated diffractive optics,” in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds., Proc. SPIE2600, 50–55 (1995); C. G. Blough, S. K. Mack, R. L. Michaels, M. Rossi, “Diamond turning and replication of high-efficiency diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 342–345.

Maystre, D.

D. Maystre, “A new general integral theory for dielectric coated gratings,” J. Opt. Soc. Am. 60, 490–495 (1978).
[CrossRef]

M. Rossi, C. G. Blough, D. H. Raguin, E. K. Popov, D. Maystre, “Diffraction efficiency of high-NA continuous-relief diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 233–236.

Medeiros, S. S.

M. B. Stern, H. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Michaels, R. L.

See, for example, C. G. Blough, D. Faklis, S. K. Mack, R. L. Michaels, S. J. Ward, “High-efficiency replicated diffractive optics,” in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds., Proc. SPIE2600, 50–55 (1995); C. G. Blough, S. K. Mack, R. L. Michaels, M. Rossi, “Diamond turning and replication of high-efficiency diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 342–345.

Moharam, M. G.

Morris, G. M.

Nishihara, H.

Noponen, E.

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Pommet, D. A.

Popov, E. K.

M. Rossi, C. G. Blough, D. H. Raguin, E. K. Popov, D. Maystre, “Diffraction efficiency of high-NA continuous-relief diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 233–236.

Raguin, D. H.

M. Rossi, C. G. Blough, D. H. Raguin, E. K. Popov, D. Maystre, “Diffraction efficiency of high-NA continuous-relief diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 233–236.

Riedl, M. J.

See, for example, M. J. Riedl, “Diamond-turned diffractive optical elements for the infrared,” in Broadband Networks: Strategies and Technologies, R. A. Cryan, P. N. Fernando, P. Ghiggino, J. M. Senior, eds., Proc. SPIE2540, 257 (1995); P. P. Clark, C. Londono, “Production of kinoforms by single-point diamond machining,” Opt. News (12), 39–40 (12/1989).

Rogers, J. R.

Rossi, M.

M. Rossi, R. E. Kunz, H. P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996–6007 (1995).
[CrossRef] [PubMed]

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

M. Rossi, C. G. Blough, D. H. Raguin, E. K. Popov, D. Maystre, “Diffraction efficiency of high-NA continuous-relief diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 233–236.

Saito, T. T.

T. T. Saito, “Diamond turning of optics: The past, the present, and the exciting future” Opt. Eng. 17, 570–573 (1978).
[CrossRef]

Schütz, H.

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Stephenson, D.

See, for example, D. Stephenson, “Diffractive optical elements simplify scanning systems,” LFW 6, 75–80 (1995); J. S. Anderson, C. W. Chen, R. A. Spande, “Thermal weapon sight (TWS) AN/PAS-13 diffractive optics designed for producibility,” NASA Conf. Pub.3227, (NASA, Greenbelt, Md., 1993), pp. 303–324; C. J. Shackelford, X. Ning, “Design of plastic diffractive/refractive hybrid lenses for CCD cameras,” and in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds. Proc. SPIE2600, 100–105 (1995).

Stern, M. B.

M. B. Stern, H. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Stone, T.

Swanson, G. J.

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” 914 (MIT, Cambridge, Mass., 1991).

Turunen, J.

Vasara, A.

Ward, S. J.

See, for example, C. G. Blough, D. Faklis, S. K. Mack, R. L. Michaels, S. J. Ward, “High-efficiency replicated diffractive optics,” in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds., Proc. SPIE2600, 50–55 (1995); C. G. Blough, S. K. Mack, R. L. Michaels, M. Rossi, “Diamond turning and replication of high-efficiency diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 342–345.

Appl. Opt. (6)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (1)

M. B. Stern, H. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

LFW (1)

See, for example, D. Stephenson, “Diffractive optical elements simplify scanning systems,” LFW 6, 75–80 (1995); J. S. Anderson, C. W. Chen, R. A. Spande, “Thermal weapon sight (TWS) AN/PAS-13 diffractive optics designed for producibility,” NASA Conf. Pub.3227, (NASA, Greenbelt, Md., 1993), pp. 303–324; C. J. Shackelford, X. Ning, “Design of plastic diffractive/refractive hybrid lenses for CCD cameras,” and in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds. Proc. SPIE2600, 100–105 (1995).

Opt. Eng. (2)

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief microoptical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

T. T. Saito, “Diamond turning of optics: The past, the present, and the exciting future” Opt. Eng. 17, 570–573 (1978).
[CrossRef]

Opt. Lett. (1)

Other (7)

M. Rossi, C. G. Blough, D. H. Raguin, E. K. Popov, D. Maystre, “Diffraction efficiency of high-NA continuous-relief diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 233–236.

Apochromatic Hybrid Doublets, Melles Griot Corporation, Irvine, Calif.

For example, Allen-Bradley Model 8200.

See, for example, Precitech Ultrapath Controller, Precitech, Inc. and Nanopath Controller, Rank Pneumo, Inc.

See, for example, C. G. Blough, D. Faklis, S. K. Mack, R. L. Michaels, S. J. Ward, “High-efficiency replicated diffractive optics,” in Design, Fabrication, and Applications of Precision Plastic Optics, X. Ning, R. T. Hebert, eds., Proc. SPIE2600, 50–55 (1995); C. G. Blough, S. K. Mack, R. L. Michaels, M. Rossi, “Diamond turning and replication of high-efficiency diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 342–345.

See, for example, M. J. Riedl, “Diamond-turned diffractive optical elements for the infrared,” in Broadband Networks: Strategies and Technologies, R. A. Cryan, P. N. Fernando, P. Ghiggino, J. M. Senior, eds., Proc. SPIE2540, 257 (1995); P. P. Clark, C. Londono, “Production of kinoforms by single-point diamond machining,” Opt. News (12), 39–40 (12/1989).

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” 914 (MIT, Cambridge, Mass., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of potential fabrication errors that can be introduced during replication processes.

Fig. 2
Fig. 2

Ray tracing through a diffractive surface-relief structure.

Fig. 3
Fig. 3

Graph of measured local diffraction efficiency values versus wavelength-to-zone-width ratio. The predicted theoretical performance [see Eq. (8)] for a material with an index of refraction of 1.5 is illustrated as a solid curve.

Fig. 4
Fig. 4

Interferogram of the wave front from a 10-mm clear aperture f/4 diffractive collimating lens. The test wavelength was 633 nm.

Fig. 5
Fig. 5

Interferogram of a f/2 hybrid refractive–diffractive collimating lens. The element provides excellent performance between 750 and 1000 nm. The test wavelength is 633 nm.

Fig. 6
Fig. 6

Scanning electron microscope microphotograph of a replicated f/2 diffractive surface. The zone depth is 5.7 µm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ=2πλs1r2+s2r4+s3r6++snr2n,
dsc=mλns-ni,
Λ2λf/#,
Δϕ=4πλi=1nisir2i-1Δr,
Λ/mλ1.
dopt=mλniλ-nsλcos θm,
sin θm=mλΛ.
ηopt=ΛΛ, with Λ=Λ1-dopt tan θm,

Metrics