Abstract

Diffractive optical elements with blazed profiles can, in theory, have 100% relative efficiency. We review several methods for making such elements and compare their advantages and limitations. Our emphasis is on processes to produce elements other than those with approximate, stepped surfaces, such as binary optical elements. For optical methods, we offer an expression relating the maximum numerical aperture of a diffractive lens with a given maximum efficiency to the numerical aperture of the recording system.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968), Chap. 4.
  2. D. A. Pommett, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
    [CrossRef]
  3. D. C. Dobson, J. A. Cox, “Optimal design of low order diffractive structures,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 5–8.
  4. G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” (MIT Lincoln Laboratory, Cambridge, Mass., 1989).
  5. E. G. Johnson, “Advantages of genetic algorithm optimization methods in diffractive optic design,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 54–76.
  6. See, for example, J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990); M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991); P. D. Hillman, “How manufacturing errors in binary optics arrays affect far field patterns,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 298–308 (1995).
  7. A. Kathman, D. Hochmuth, D. Brown, “Efficiency considerations for diffractive optical elements,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 114–122 (1995).
    [CrossRef]
  8. R. W. Wood, “The echelette grating for the infra-red,” Philos. Mag. 20, 770–778 (1910).
    [CrossRef]
  9. M. C. Hutley, Diffraction Gratings (Academic, London, 1982), pp. 250–257.
  10. K. Goto, K. Mori, G. Hatakoshi, S. Takahashi, “Spherical grating objective lenses for optical disk pick-ups,” Jpn. J. Appl. Phys. 26, Supp. 26-4, 135–140 (1987).
  11. P. P. Clark, C. Londoño, “Production of kinoforms by single-point diamond turning,” Opt. News 15(12), 39–40 (1989).
    [CrossRef]
  12. B. E. Bernacki, A. C. Miller, L. C. Maxey, J. P. Cunningham, “Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds,” in Optical Manufacturing and Testing, V. J. Dougherty, H. P. Stahl, eds., Proc. SPIE2536, 463–474 (1995).
    [CrossRef]
  13. R. L. Ronconec, D. W. Sweeney, “Cancellation of material dispersion in harmonic diffractive lenses,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 81–87 (1995).
    [CrossRef]
  14. C. G. Blough, G. M. Morris, “Diffractive/refractive lenses offer high performance at low cost,” Laser Focus World 31, (11), 67–74 (1995).
  15. M. M. Meyers, M. E. Schickler, “A method of manufacturing a diffractive surface profile,” U.S. patent5,589,983 (31December1996).
  16. J. Futhey, M. Fleming, “Superzone diffractive lenses,” in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 4–6.
  17. A. Cornu, “Sur la diffraction propriétés focales des réseaux,” C. R. Acad. Paris 80, 645–649 (1875).
  18. A. Cotton, “Résaux obtenus par la photographie des ordes stationaires,” Seances Soc. Fran. Phys.70–73 (1901).
  19. N. K. Sheridan, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316–318 (1968).
    [CrossRef]
  20. M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 1–13 (1975).
    [CrossRef]
  21. G. J. Schmahl, “Holographically made diffraction gratings for the visible, UV, and soft x-ray region,” J. Spectrosc. Soc. Jpn. 23, Supp. 1, 3–11 (1974).
  22. M. Breidne, S. Johansson, L.-E. Nilson, H. Ahlen, “Blazed holographic gratings,” Opt. Acta 26, 1427–1441 (1979).
    [CrossRef]
  23. N. Aebischer, “Calculs de profils dissymétriques observables des figures d’interférences ordes multiples spheriques,” Nouv. Rev. d’Opt. Appl. 2, 351–366 (1971).
    [CrossRef]
  24. R. Ferrière, P. Andres, C. Illueca, “Réalisation de lentilles de phase à Fresnel par interférométrie à ordes multiples,” J. Opt. (Paris) 15, 213–218 (1984).
  25. J. J. Claire, M. Françon, J.-P. Laude, “Lentilles (kinoform) obtenus par interférométrie,” C.R. Acad. Sci. Paris 270, 1600–1603 (1970).
  26. M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
    [CrossRef]
  27. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13, 150–155 (1969).
    [CrossRef]
  28. J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970).
    [PubMed]
  29. V. P. Koronkovich, “Fabrication of kinoform optical elements,” Optik 67, 257–266 (1984).
  30. M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
    [CrossRef]
  31. J. Schwider, J. Grzanna, R. Spolaczyk, R. Burov, “Testing aspherics in reflected light using blazed synthetic holograms,” Opt. Acta 27, 683–698 (1980).
    [CrossRef]
  32. N. Emerton, R. W. Smith, R. G. Cañas, “Blazed surface relief diffractive optical elements,” in Holographic Systems Components and Applications, IERE Conf. Proc. Cambridge76, 99–103 (1987).
  33. E.-B. Kley, B. Schnabel, “E-beam lithography: a suitable technology for fabrication of high-accuracy 2D and 3D surface profiles,” in Microlithography and Metrology in Micromachining, M. T. Postek, ed., Proc. SPIE2640, 71–80 (1995).
    [CrossRef]
  34. M. Ekberg, F. Nikolajeff, M. Larsson, S. Hård, “Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography,” Appl. Opt. 33, 103–107 (1994).
    [CrossRef] [PubMed]
  35. V. Moreno, M. C. Hutley, J. R. Tyrer, “The manufacture of blazed oblique zone plates for use at 10.6 µm,” in Holographic Systems Components and Applications, IEE Conf. Proc. Bath311, 76–79 (1989).
  36. D. Purdy, “Fabrication of complex micro-optic components using photosculpting through halftone transmission masks,” Pure Appl. Opt. 3, 167–175 (1994).
    [CrossRef]
  37. D. C. O’Shea, W. S. Rockward, “Gray-scale masks for diffractive-optics fabrication: II. Spatially filtered halftone screens,” Appl. Opt. 34, 7518–7526 (1995).
    [CrossRef] [PubMed]
  38. T. J. Suleski, D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995).
    [CrossRef] [PubMed]
  39. G. Gal, “Micro-optics technology development for advanced sensors,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 329–359; “Exposure mask for fabricating microlenses,” U.S. Patent5,482,800 (9January1996).
  40. W. Däschner, P. Long, M. Larsson, S. H. Lee, “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
    [CrossRef]
  41. M. T. Duignan, G. P. Behrmann, “Excimer laser micromachining for rapid fabrication of binary and blazed diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 314–317.
  42. G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 36, 4666–4674 (1997).
    [CrossRef] [PubMed]
  43. X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive micro-lenses using excimer laser ablation,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 310–313.
  44. A. P. Wood, “Hybrid refractive-diffractive lens for manufacture by diamond turning,” in Commercial Application of Precision Manufacturing at the Submicron Level, L. R. Baker, ed., Proc. SPIE1573, 122–128 (1991).
    [CrossRef]
  45. J. A. Futhey, “Diffractive bifocal intraocular lens,” in Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, ed., Proc. SPIE1052, 142–149 (1989).
    [CrossRef]
  46. M. J. Simpson, J. A. Futhey, “Multi-focal diffractive ophthalmic lenses,” U.S. Patent5,076,684 (31December1991).
  47. J. A. Futhey, W. B. Isaacson, R. L. Neby, “Multifocal diffractive lens,” U.S. Patent4,830,481 (16May1989).
  48. K. C. Johnson, “Dispersion-compensated Fresnel lens,” U.S. Patent5,161,057 (3November1992).
  49. J. C. Marron, D. K. Angell, A. M. Tai, “Higher-order kinoforms,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 62–66 (1990).
    [CrossRef]
  50. D. W. Sweeney, G. Sommargren, “Single element achromatic diffractive lens,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 26–29.
  51. J. A. Futhey, “Diffractive lens,” U.S. Patent4,936,666 (26June1990); “Superzone holographic mirror,” U.S. Patent5,285,314 (8February1994).
  52. M. Rossi, G. L. Bona, R. E. Kunz, “Phase-matched Fresnel elements,” Opt. Commun. 97, 6–10 (1993).
    [CrossRef]
  53. M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates for use in the 10 µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
    [CrossRef]

1997

1995

T. J. Suleski, D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995).
[CrossRef] [PubMed]

D. C. O’Shea, W. S. Rockward, “Gray-scale masks for diffractive-optics fabrication: II. Spatially filtered halftone screens,” Appl. Opt. 34, 7518–7526 (1995).
[CrossRef] [PubMed]

W. Däschner, P. Long, M. Larsson, S. H. Lee, “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
[CrossRef]

C. G. Blough, G. M. Morris, “Diffractive/refractive lenses offer high performance at low cost,” Laser Focus World 31, (11), 67–74 (1995).

1994

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

D. A. Pommett, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
[CrossRef]

D. Purdy, “Fabrication of complex micro-optic components using photosculpting through halftone transmission masks,” Pure Appl. Opt. 3, 167–175 (1994).
[CrossRef]

M. Ekberg, F. Nikolajeff, M. Larsson, S. Hård, “Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography,” Appl. Opt. 33, 103–107 (1994).
[CrossRef] [PubMed]

1993

M. Rossi, G. L. Bona, R. E. Kunz, “Phase-matched Fresnel elements,” Opt. Commun. 97, 6–10 (1993).
[CrossRef]

1991

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates for use in the 10 µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
[CrossRef]

1989

P. P. Clark, C. Londoño, “Production of kinoforms by single-point diamond turning,” Opt. News 15(12), 39–40 (1989).
[CrossRef]

1988

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
[CrossRef]

1987

K. Goto, K. Mori, G. Hatakoshi, S. Takahashi, “Spherical grating objective lenses for optical disk pick-ups,” Jpn. J. Appl. Phys. 26, Supp. 26-4, 135–140 (1987).

1984

V. P. Koronkovich, “Fabrication of kinoform optical elements,” Optik 67, 257–266 (1984).

R. Ferrière, P. Andres, C. Illueca, “Réalisation de lentilles de phase à Fresnel par interférométrie à ordes multiples,” J. Opt. (Paris) 15, 213–218 (1984).

1980

J. Schwider, J. Grzanna, R. Spolaczyk, R. Burov, “Testing aspherics in reflected light using blazed synthetic holograms,” Opt. Acta 27, 683–698 (1980).
[CrossRef]

1979

M. Breidne, S. Johansson, L.-E. Nilson, H. Ahlen, “Blazed holographic gratings,” Opt. Acta 26, 1427–1441 (1979).
[CrossRef]

1975

M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 1–13 (1975).
[CrossRef]

1974

G. J. Schmahl, “Holographically made diffraction gratings for the visible, UV, and soft x-ray region,” J. Spectrosc. Soc. Jpn. 23, Supp. 1, 3–11 (1974).

1971

N. Aebischer, “Calculs de profils dissymétriques observables des figures d’interférences ordes multiples spheriques,” Nouv. Rev. d’Opt. Appl. 2, 351–366 (1971).
[CrossRef]

1970

J. J. Claire, M. Françon, J.-P. Laude, “Lentilles (kinoform) obtenus par interférométrie,” C.R. Acad. Sci. Paris 270, 1600–1603 (1970).

J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970).
[PubMed]

1969

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13, 150–155 (1969).
[CrossRef]

1968

N. K. Sheridan, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316–318 (1968).
[CrossRef]

1910

R. W. Wood, “The echelette grating for the infra-red,” Philos. Mag. 20, 770–778 (1910).
[CrossRef]

1901

A. Cotton, “Résaux obtenus par la photographie des ordes stationaires,” Seances Soc. Fran. Phys.70–73 (1901).

1875

A. Cornu, “Sur la diffraction propriétés focales des réseaux,” C. R. Acad. Paris 80, 645–649 (1875).

Aebischer, N.

N. Aebischer, “Calculs de profils dissymétriques observables des figures d’interférences ordes multiples spheriques,” Nouv. Rev. d’Opt. Appl. 2, 351–366 (1971).
[CrossRef]

Ahlen, H.

M. Breidne, S. Johansson, L.-E. Nilson, H. Ahlen, “Blazed holographic gratings,” Opt. Acta 26, 1427–1441 (1979).
[CrossRef]

Andres, P.

R. Ferrière, P. Andres, C. Illueca, “Réalisation de lentilles de phase à Fresnel par interférométrie à ordes multiples,” J. Opt. (Paris) 15, 213–218 (1984).

Angell, D. K.

J. C. Marron, D. K. Angell, A. M. Tai, “Higher-order kinoforms,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 62–66 (1990).
[CrossRef]

Behrmann, G. P.

G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 36, 4666–4674 (1997).
[CrossRef] [PubMed]

M. T. Duignan, G. P. Behrmann, “Excimer laser micromachining for rapid fabrication of binary and blazed diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 314–317.

Bergstrom, J.

See, for example, J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990); M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991); P. D. Hillman, “How manufacturing errors in binary optics arrays affect far field patterns,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 298–308 (1995).

Bernacki, B. E.

B. E. Bernacki, A. C. Miller, L. C. Maxey, J. P. Cunningham, “Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds,” in Optical Manufacturing and Testing, V. J. Dougherty, H. P. Stahl, eds., Proc. SPIE2536, 463–474 (1995).
[CrossRef]

Blough, C. G.

C. G. Blough, G. M. Morris, “Diffractive/refractive lenses offer high performance at low cost,” Laser Focus World 31, (11), 67–74 (1995).

Bona, G. L.

M. Rossi, G. L. Bona, R. E. Kunz, “Phase-matched Fresnel elements,” Opt. Commun. 97, 6–10 (1993).
[CrossRef]

Breidne, M.

M. Breidne, S. Johansson, L.-E. Nilson, H. Ahlen, “Blazed holographic gratings,” Opt. Acta 26, 1427–1441 (1979).
[CrossRef]

Brown, D.

A. Kathman, D. Hochmuth, D. Brown, “Efficiency considerations for diffractive optical elements,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 114–122 (1995).
[CrossRef]

Burov, R.

J. Schwider, J. Grzanna, R. Spolaczyk, R. Burov, “Testing aspherics in reflected light using blazed synthetic holograms,” Opt. Acta 27, 683–698 (1980).
[CrossRef]

Cañas, R. G.

N. Emerton, R. W. Smith, R. G. Cañas, “Blazed surface relief diffractive optical elements,” in Holographic Systems Components and Applications, IERE Conf. Proc. Cambridge76, 99–103 (1987).

Claire, J. J.

J. J. Claire, M. Françon, J.-P. Laude, “Lentilles (kinoform) obtenus par interférométrie,” C.R. Acad. Sci. Paris 270, 1600–1603 (1970).

Clark, P. P.

P. P. Clark, C. Londoño, “Production of kinoforms by single-point diamond turning,” Opt. News 15(12), 39–40 (1989).
[CrossRef]

Cornu, A.

A. Cornu, “Sur la diffraction propriétés focales des réseaux,” C. R. Acad. Paris 80, 645–649 (1875).

Cotton, A.

A. Cotton, “Résaux obtenus par la photographie des ordes stationaires,” Seances Soc. Fran. Phys.70–73 (1901).

Cox, J. A.

See, for example, J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990); M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991); P. D. Hillman, “How manufacturing errors in binary optics arrays affect far field patterns,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 298–308 (1995).

D. C. Dobson, J. A. Cox, “Optimal design of low order diffractive structures,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 5–8.

Cunningham, J. P.

B. E. Bernacki, A. C. Miller, L. C. Maxey, J. P. Cunningham, “Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds,” in Optical Manufacturing and Testing, V. J. Dougherty, H. P. Stahl, eds., Proc. SPIE2536, 463–474 (1995).
[CrossRef]

Däschner, W.

W. Däschner, P. Long, M. Larsson, S. H. Lee, “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
[CrossRef]

Dobson, D. C.

D. C. Dobson, J. A. Cox, “Optimal design of low order diffractive structures,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 5–8.

Duignan, M. T.

G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 36, 4666–4674 (1997).
[CrossRef] [PubMed]

M. T. Duignan, G. P. Behrmann, “Excimer laser micromachining for rapid fabrication of binary and blazed diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 314–317.

Ekberg, M.

Emerton, N.

N. Emerton, R. W. Smith, R. G. Cañas, “Blazed surface relief diffractive optical elements,” in Holographic Systems Components and Applications, IERE Conf. Proc. Cambridge76, 99–103 (1987).

Ferrière, R.

R. Ferrière, P. Andres, C. Illueca, “Réalisation de lentilles de phase à Fresnel par interférométrie à ordes multiples,” J. Opt. (Paris) 15, 213–218 (1984).

Fleming, M.

J. Futhey, M. Fleming, “Superzone diffractive lenses,” in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 4–6.

Françon, M.

J. J. Claire, M. Françon, J.-P. Laude, “Lentilles (kinoform) obtenus par interférométrie,” C.R. Acad. Sci. Paris 270, 1600–1603 (1970).

Fritz, B.

See, for example, J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990); M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991); P. D. Hillman, “How manufacturing errors in binary optics arrays affect far field patterns,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 298–308 (1995).

Futhey, J.

J. Futhey, M. Fleming, “Superzone diffractive lenses,” in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 4–6.

Futhey, J. A.

J. A. Futhey, “Diffractive bifocal intraocular lens,” in Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, ed., Proc. SPIE1052, 142–149 (1989).
[CrossRef]

M. J. Simpson, J. A. Futhey, “Multi-focal diffractive ophthalmic lenses,” U.S. Patent5,076,684 (31December1991).

J. A. Futhey, “Diffractive lens,” U.S. Patent4,936,666 (26June1990); “Superzone holographic mirror,” U.S. Patent5,285,314 (8February1994).

J. A. Futhey, W. B. Isaacson, R. L. Neby, “Multifocal diffractive lens,” U.S. Patent4,830,481 (16May1989).

Gal, G.

G. Gal, “Micro-optics technology development for advanced sensors,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 329–359; “Exposure mask for fabricating microlenses,” U.S. Patent5,482,800 (9January1996).

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968), Chap. 4.

Goto, K.

K. Goto, K. Mori, G. Hatakoshi, S. Takahashi, “Spherical grating objective lenses for optical disk pick-ups,” Jpn. J. Appl. Phys. 26, Supp. 26-4, 135–140 (1987).

Grann, E. B.

Grzanna, J.

J. Schwider, J. Grzanna, R. Spolaczyk, R. Burov, “Testing aspherics in reflected light using blazed synthetic holograms,” Opt. Acta 27, 683–698 (1980).
[CrossRef]

Hård, S.

Hatakoshi, G.

K. Goto, K. Mori, G. Hatakoshi, S. Takahashi, “Spherical grating objective lenses for optical disk pick-ups,” Jpn. J. Appl. Phys. 26, Supp. 26-4, 135–140 (1987).

Hirsch, P. M.

J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970).
[PubMed]

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13, 150–155 (1969).
[CrossRef]

Hochmuth, D.

A. Kathman, D. Hochmuth, D. Brown, “Efficiency considerations for diffractive optical elements,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 114–122 (1995).
[CrossRef]

Hutley, M. C.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates for use in the 10 µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
[CrossRef]

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
[CrossRef]

M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 1–13 (1975).
[CrossRef]

V. Moreno, M. C. Hutley, J. R. Tyrer, “The manufacture of blazed oblique zone plates for use at 10.6 µm,” in Holographic Systems Components and Applications, IEE Conf. Proc. Bath311, 76–79 (1989).

M. C. Hutley, Diffraction Gratings (Academic, London, 1982), pp. 250–257.

Illueca, C.

R. Ferrière, P. Andres, C. Illueca, “Réalisation de lentilles de phase à Fresnel par interférométrie à ordes multiples,” J. Opt. (Paris) 15, 213–218 (1984).

Isaacson, W. B.

J. A. Futhey, W. B. Isaacson, R. L. Neby, “Multifocal diffractive lens,” U.S. Patent4,830,481 (16May1989).

Johansson, S.

M. Breidne, S. Johansson, L.-E. Nilson, H. Ahlen, “Blazed holographic gratings,” Opt. Acta 26, 1427–1441 (1979).
[CrossRef]

Johnson, E. G.

E. G. Johnson, “Advantages of genetic algorithm optimization methods in diffractive optic design,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 54–76.

Johnson, K. C.

K. C. Johnson, “Dispersion-compensated Fresnel lens,” U.S. Patent5,161,057 (3November1992).

Jordan, J. A.

J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970).
[PubMed]

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13, 150–155 (1969).
[CrossRef]

Kathman, A.

A. Kathman, D. Hochmuth, D. Brown, “Efficiency considerations for diffractive optical elements,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 114–122 (1995).
[CrossRef]

Kley, E.-B.

E.-B. Kley, B. Schnabel, “E-beam lithography: a suitable technology for fabrication of high-accuracy 2D and 3D surface profiles,” in Microlithography and Metrology in Micromachining, M. T. Postek, ed., Proc. SPIE2640, 71–80 (1995).
[CrossRef]

Koronkovich, V. P.

V. P. Koronkovich, “Fabrication of kinoform optical elements,” Optik 67, 257–266 (1984).

Kunz, R. E.

M. Rossi, G. L. Bona, R. E. Kunz, “Phase-matched Fresnel elements,” Opt. Commun. 97, 6–10 (1993).
[CrossRef]

Larsson, M.

W. Däschner, P. Long, M. Larsson, S. H. Lee, “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
[CrossRef]

M. Ekberg, F. Nikolajeff, M. Larsson, S. Hård, “Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography,” Appl. Opt. 33, 103–107 (1994).
[CrossRef] [PubMed]

Laude, J.-P.

J. J. Claire, M. Françon, J.-P. Laude, “Lentilles (kinoform) obtenus par interférométrie,” C.R. Acad. Sci. Paris 270, 1600–1603 (1970).

Lee, J.

See, for example, J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990); M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991); P. D. Hillman, “How manufacturing errors in binary optics arrays affect far field patterns,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 298–308 (1995).

Lee, S. H.

W. Däschner, P. Long, M. Larsson, S. H. Lee, “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
[CrossRef]

Leger, J. R.

X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive micro-lenses using excimer laser ablation,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 310–313.

Lesem, L. B.

J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970).
[PubMed]

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13, 150–155 (1969).
[CrossRef]

Londoño, C.

P. P. Clark, C. Londoño, “Production of kinoforms by single-point diamond turning,” Opt. News 15(12), 39–40 (1989).
[CrossRef]

Long, P.

W. Däschner, P. Long, M. Larsson, S. H. Lee, “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
[CrossRef]

Marron, J. C.

J. C. Marron, D. K. Angell, A. M. Tai, “Higher-order kinoforms,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 62–66 (1990).
[CrossRef]

Maxey, L. C.

B. E. Bernacki, A. C. Miller, L. C. Maxey, J. P. Cunningham, “Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds,” in Optical Manufacturing and Testing, V. J. Dougherty, H. P. Stahl, eds., Proc. SPIE2536, 463–474 (1995).
[CrossRef]

Meyers, M. M.

M. M. Meyers, M. E. Schickler, “A method of manufacturing a diffractive surface profile,” U.S. patent5,589,983 (31December1996).

Miller, A. C.

B. E. Bernacki, A. C. Miller, L. C. Maxey, J. P. Cunningham, “Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds,” in Optical Manufacturing and Testing, V. J. Dougherty, H. P. Stahl, eds., Proc. SPIE2536, 463–474 (1995).
[CrossRef]

Moharam, M. G.

Moreno, V.

V. Moreno, M. C. Hutley, J. R. Tyrer, “The manufacture of blazed oblique zone plates for use at 10.6 µm,” in Holographic Systems Components and Applications, IEE Conf. Proc. Bath311, 76–79 (1989).

Mori, K.

K. Goto, K. Mori, G. Hatakoshi, S. Takahashi, “Spherical grating objective lenses for optical disk pick-ups,” Jpn. J. Appl. Phys. 26, Supp. 26-4, 135–140 (1987).

Morris, G. M.

C. G. Blough, G. M. Morris, “Diffractive/refractive lenses offer high performance at low cost,” Laser Focus World 31, (11), 67–74 (1995).

Neby, R. L.

J. A. Futhey, W. B. Isaacson, R. L. Neby, “Multifocal diffractive lens,” U.S. Patent4,830,481 (16May1989).

Nelson, S.

See, for example, J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990); M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991); P. D. Hillman, “How manufacturing errors in binary optics arrays affect far field patterns,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 298–308 (1995).

Nikolajeff, F.

Nilson, L.-E.

M. Breidne, S. Johansson, L.-E. Nilson, H. Ahlen, “Blazed holographic gratings,” Opt. Acta 26, 1427–1441 (1979).
[CrossRef]

O’Shea, D. C.

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Pommett, D. A.

Purdy, D.

D. Purdy, “Fabrication of complex micro-optic components using photosculpting through halftone transmission masks,” Pure Appl. Opt. 3, 167–175 (1994).
[CrossRef]

Rediker, R. H.

X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive micro-lenses using excimer laser ablation,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 310–313.

Rockward, W. S.

Ronconec, R. L.

R. L. Ronconec, D. W. Sweeney, “Cancellation of material dispersion in harmonic diffractive lenses,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 81–87 (1995).
[CrossRef]

Rossi, M.

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

M. Rossi, G. L. Bona, R. E. Kunz, “Phase-matched Fresnel elements,” Opt. Commun. 97, 6–10 (1993).
[CrossRef]

Schickler, M. E.

M. M. Meyers, M. E. Schickler, “A method of manufacturing a diffractive surface profile,” U.S. patent5,589,983 (31December1996).

Schmahl, G. J.

G. J. Schmahl, “Holographically made diffraction gratings for the visible, UV, and soft x-ray region,” J. Spectrosc. Soc. Jpn. 23, Supp. 1, 3–11 (1974).

Schnabel, B.

E.-B. Kley, B. Schnabel, “E-beam lithography: a suitable technology for fabrication of high-accuracy 2D and 3D surface profiles,” in Microlithography and Metrology in Micromachining, M. T. Postek, ed., Proc. SPIE2640, 71–80 (1995).
[CrossRef]

Schütz, H.

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Schwider, J.

J. Schwider, J. Grzanna, R. Spolaczyk, R. Burov, “Testing aspherics in reflected light using blazed synthetic holograms,” Opt. Acta 27, 683–698 (1980).
[CrossRef]

Sheridan, N. K.

N. K. Sheridan, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316–318 (1968).
[CrossRef]

Simpson, M. J.

M. J. Simpson, J. A. Futhey, “Multi-focal diffractive ophthalmic lenses,” U.S. Patent5,076,684 (31December1991).

Smith, R. W.

N. Emerton, R. W. Smith, R. G. Cañas, “Blazed surface relief diffractive optical elements,” in Holographic Systems Components and Applications, IERE Conf. Proc. Cambridge76, 99–103 (1987).

Sommargren, G.

D. W. Sweeney, G. Sommargren, “Single element achromatic diffractive lens,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 26–29.

Spolaczyk, R.

J. Schwider, J. Grzanna, R. Spolaczyk, R. Burov, “Testing aspherics in reflected light using blazed synthetic holograms,” Opt. Acta 27, 683–698 (1980).
[CrossRef]

Stevens, R. F.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates for use in the 10 µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
[CrossRef]

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
[CrossRef]

Suleski, T. J.

Swanson, G. J.

G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” (MIT Lincoln Laboratory, Cambridge, Mass., 1989).

Sweeney, D. W.

D. W. Sweeney, G. Sommargren, “Single element achromatic diffractive lens,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 26–29.

R. L. Ronconec, D. W. Sweeney, “Cancellation of material dispersion in harmonic diffractive lenses,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 81–87 (1995).
[CrossRef]

Tai, A. M.

J. C. Marron, D. K. Angell, A. M. Tai, “Higher-order kinoforms,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 62–66 (1990).
[CrossRef]

Takahashi, S.

K. Goto, K. Mori, G. Hatakoshi, S. Takahashi, “Spherical grating objective lenses for optical disk pick-ups,” Jpn. J. Appl. Phys. 26, Supp. 26-4, 135–140 (1987).

Tyrer, J. R.

V. Moreno, M. C. Hutley, J. R. Tyrer, “The manufacture of blazed oblique zone plates for use at 10.6 µm,” in Holographic Systems Components and Applications, IEE Conf. Proc. Bath311, 76–79 (1989).

Van Rooy, D. L.

Wang, X.

X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive micro-lenses using excimer laser ablation,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 310–313.

Werner, T.

See, for example, J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990); M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991); P. D. Hillman, “How manufacturing errors in binary optics arrays affect far field patterns,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 298–308 (1995).

Wilson, S. J.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates for use in the 10 µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
[CrossRef]

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
[CrossRef]

Wood, A. P.

A. P. Wood, “Hybrid refractive-diffractive lens for manufacture by diamond turning,” in Commercial Application of Precision Manufacturing at the Submicron Level, L. R. Baker, ed., Proc. SPIE1573, 122–128 (1991).
[CrossRef]

Wood, R. W.

R. W. Wood, “The echelette grating for the infra-red,” Philos. Mag. 20, 770–778 (1910).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. K. Sheridan, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316–318 (1968).
[CrossRef]

C. R. Acad. Paris

A. Cornu, “Sur la diffraction propriétés focales des réseaux,” C. R. Acad. Paris 80, 645–649 (1875).

C.R. Acad. Sci. Paris

J. J. Claire, M. Françon, J.-P. Laude, “Lentilles (kinoform) obtenus par interférométrie,” C.R. Acad. Sci. Paris 270, 1600–1603 (1970).

IBM J. Res. Develop.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13, 150–155 (1969).
[CrossRef]

J. Mod. Opt.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
[CrossRef]

J. Opt. (Paris)

R. Ferrière, P. Andres, C. Illueca, “Réalisation de lentilles de phase à Fresnel par interférométrie à ordes multiples,” J. Opt. (Paris) 15, 213–218 (1984).

J. Opt. Soc. Am. A

J. Spectrosc. Soc. Jpn.

G. J. Schmahl, “Holographically made diffraction gratings for the visible, UV, and soft x-ray region,” J. Spectrosc. Soc. Jpn. 23, Supp. 1, 3–11 (1974).

J. Vac. Sci. Technol. B

W. Däschner, P. Long, M. Larsson, S. H. Lee, “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
[CrossRef]

Jpn. J. Appl. Phys.

K. Goto, K. Mori, G. Hatakoshi, S. Takahashi, “Spherical grating objective lenses for optical disk pick-ups,” Jpn. J. Appl. Phys. 26, Supp. 26-4, 135–140 (1987).

Laser Focus World

C. G. Blough, G. M. Morris, “Diffractive/refractive lenses offer high performance at low cost,” Laser Focus World 31, (11), 67–74 (1995).

Nouv. Rev. d’Opt. Appl.

N. Aebischer, “Calculs de profils dissymétriques observables des figures d’interférences ordes multiples spheriques,” Nouv. Rev. d’Opt. Appl. 2, 351–366 (1971).
[CrossRef]

Opt. Acta

M. Breidne, S. Johansson, L.-E. Nilson, H. Ahlen, “Blazed holographic gratings,” Opt. Acta 26, 1427–1441 (1979).
[CrossRef]

M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 1–13 (1975).
[CrossRef]

J. Schwider, J. Grzanna, R. Spolaczyk, R. Burov, “Testing aspherics in reflected light using blazed synthetic holograms,” Opt. Acta 27, 683–698 (1980).
[CrossRef]

Opt. Commun.

M. Rossi, G. L. Bona, R. E. Kunz, “Phase-matched Fresnel elements,” Opt. Commun. 97, 6–10 (1993).
[CrossRef]

Opt. Eng.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates for use in the 10 µm spectral region,” Opt. Eng. 30, 1005–1010 (1991).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Opt. News

P. P. Clark, C. Londoño, “Production of kinoforms by single-point diamond turning,” Opt. News 15(12), 39–40 (1989).
[CrossRef]

Optik

V. P. Koronkovich, “Fabrication of kinoform optical elements,” Optik 67, 257–266 (1984).

Philos. Mag.

R. W. Wood, “The echelette grating for the infra-red,” Philos. Mag. 20, 770–778 (1910).
[CrossRef]

Pure Appl. Opt.

D. Purdy, “Fabrication of complex micro-optic components using photosculpting through halftone transmission masks,” Pure Appl. Opt. 3, 167–175 (1994).
[CrossRef]

Seances Soc. Fran. Phys.

A. Cotton, “Résaux obtenus par la photographie des ordes stationaires,” Seances Soc. Fran. Phys.70–73 (1901).

Other

M. C. Hutley, Diffraction Gratings (Academic, London, 1982), pp. 250–257.

M. M. Meyers, M. E. Schickler, “A method of manufacturing a diffractive surface profile,” U.S. patent5,589,983 (31December1996).

J. Futhey, M. Fleming, “Superzone diffractive lenses,” in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 4–6.

B. E. Bernacki, A. C. Miller, L. C. Maxey, J. P. Cunningham, “Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds,” in Optical Manufacturing and Testing, V. J. Dougherty, H. P. Stahl, eds., Proc. SPIE2536, 463–474 (1995).
[CrossRef]

R. L. Ronconec, D. W. Sweeney, “Cancellation of material dispersion in harmonic diffractive lenses,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 81–87 (1995).
[CrossRef]

D. C. Dobson, J. A. Cox, “Optimal design of low order diffractive structures,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 5–8.

G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” (MIT Lincoln Laboratory, Cambridge, Mass., 1989).

E. G. Johnson, “Advantages of genetic algorithm optimization methods in diffractive optic design,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 54–76.

See, for example, J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990); M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991); P. D. Hillman, “How manufacturing errors in binary optics arrays affect far field patterns,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 298–308 (1995).

A. Kathman, D. Hochmuth, D. Brown, “Efficiency considerations for diffractive optical elements,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 114–122 (1995).
[CrossRef]

X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive micro-lenses using excimer laser ablation,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 310–313.

A. P. Wood, “Hybrid refractive-diffractive lens for manufacture by diamond turning,” in Commercial Application of Precision Manufacturing at the Submicron Level, L. R. Baker, ed., Proc. SPIE1573, 122–128 (1991).
[CrossRef]

J. A. Futhey, “Diffractive bifocal intraocular lens,” in Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, ed., Proc. SPIE1052, 142–149 (1989).
[CrossRef]

M. J. Simpson, J. A. Futhey, “Multi-focal diffractive ophthalmic lenses,” U.S. Patent5,076,684 (31December1991).

J. A. Futhey, W. B. Isaacson, R. L. Neby, “Multifocal diffractive lens,” U.S. Patent4,830,481 (16May1989).

K. C. Johnson, “Dispersion-compensated Fresnel lens,” U.S. Patent5,161,057 (3November1992).

J. C. Marron, D. K. Angell, A. M. Tai, “Higher-order kinoforms,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 62–66 (1990).
[CrossRef]

D. W. Sweeney, G. Sommargren, “Single element achromatic diffractive lens,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 26–29.

J. A. Futhey, “Diffractive lens,” U.S. Patent4,936,666 (26June1990); “Superzone holographic mirror,” U.S. Patent5,285,314 (8February1994).

G. Gal, “Micro-optics technology development for advanced sensors,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 329–359; “Exposure mask for fabricating microlenses,” U.S. Patent5,482,800 (9January1996).

M. T. Duignan, G. P. Behrmann, “Excimer laser micromachining for rapid fabrication of binary and blazed diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 314–317.

N. Emerton, R. W. Smith, R. G. Cañas, “Blazed surface relief diffractive optical elements,” in Holographic Systems Components and Applications, IERE Conf. Proc. Cambridge76, 99–103 (1987).

E.-B. Kley, B. Schnabel, “E-beam lithography: a suitable technology for fabrication of high-accuracy 2D and 3D surface profiles,” in Microlithography and Metrology in Micromachining, M. T. Postek, ed., Proc. SPIE2640, 71–80 (1995).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968), Chap. 4.

V. Moreno, M. C. Hutley, J. R. Tyrer, “The manufacture of blazed oblique zone plates for use at 10.6 µm,” in Holographic Systems Components and Applications, IEE Conf. Proc. Bath311, 76–79 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Ideal blazed diffractive element profile and corresponding multilevel structure, and Cornu spiral representations of the resultant amplitudes. For the ideal blazed grating, the relevant portion of the Cornu spiral is a circle. For N-level structures, the geometric figure to be unwound is the N-sided polygon inscribed within the Cornu spiral.

Fig. 2
Fig. 2

Cross-sectional view of diamond-turning configurations. (a) In single-point turning, a diamond tool with a radius tip is translated incrementally to cut the desired profile as the workpiece spins. The shape of the tool tip can be seen in the turned workpiece as surface scalloping. (b) In plunge-cut diamond turning, the workpiece is rotated as for single-point diamond turning, but the translation steps of the tool cover the full groove, and the edge of the diamond is used to cut the workpiece.

Fig. 3
Fig. 3

Generation of a sawtooth groove profile in photoresist by inclining the substrate to interference fringes of a standing wave.

Fig. 4
Fig. 4

Talystep profilometer trace of a grating made according to Fig. 3.

Fig. 5
Fig. 5

The use of spherical standing waves to generate a blazed Fresnel zone plate.

Fig. 6
Fig. 6

Synthesis of a blazed profile by multiple exposure to high-finesse fringes from a Fabry–Perot interferometer: (top) the interferometer, (bottom) the incoherent addition of individual fringes to produce the resultant groove profile.

Fig. 7
Fig. 7

Generation of a groove with a triangular profile by exposure of the photoresist to a triangular light source.27

Fig. 8
Fig. 8

Segment of a multiorder (superzone) diffractive lens. The typical diffractive lens has zones of constant depth and decreasing width as the zone radius increases. On a superzone lens, the groove depth is an integer multiple of the standard depth and the grooves are wide enough to be generated easily.

Fig. 9
Fig. 9

Limit imposed by the resolution of the recording system on the sharpness of the groove profile.

Tables (1)

Tables Icon

Table 1 Performance Data for Several Blazed DOE Fabrication Method as Reported in the Literaturea

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

q=1-p.
δ=1.22λ0NAsystem,
d=mλNAzoneplate,
NAzoneplate=mλqNAsystem1.22λ0.

Metrics