Abstract

We propose a new novelty optical filter that uses a bacteriorhodopsin film. This filter is based on the time-dependent nonlinear diffraction efficiency of real-time holograms recorded in the film. As soon as the signal beam carrying a pattern is diffracted by the polarization hologram recorded in the bacteriorhodopsin film, it begins to erase the hologram and suppresses the diffraction of the beam at the position of the stationary part of the pattern. This filter enhances only leading edges of moving patterns. In this system undesired scattered light, which is orthogonally polarized to the diffracted beam, is discriminated by a polarizer.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
    [CrossRef] [PubMed]
  2. M. Cronin-Golomb, A. M. Briernacki, C. Lin, H. Kong, “Photorefractive time differentiation of coherent optical images,” Opt. Lett. 12, 1029–1031 (1987).
    [CrossRef] [PubMed]
  3. N. S.-K. Kwong, Y. Tamita, A. Yariv, “Optical tracking filter using transient energy coupling,” J. Opt. Soc. Am. B 5, 1788–1791 (1988).
    [CrossRef]
  4. R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
    [CrossRef]
  5. F. Vachss, L. Hesselink, “Synthesis of a holographic image velocity filter using the nonlinear photorefractive effect,” Appl. Opt. 27, 2887–2894 (1988).
    [CrossRef] [PubMed]
  6. J. E. Ford, Y. Fainman, S. H. Lee, “Time-integrating interferometry using photorefractive fanout,” Opt. Lett. 13, 856–858 (1988).
    [CrossRef] [PubMed]
  7. C. Soutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
    [CrossRef]
  8. D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature 233, 149–152 (1971).
  9. N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
    [CrossRef] [PubMed]
  10. O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, “Saturable absorption, wave mixing, and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117–1119 (1990).
    [CrossRef] [PubMed]
  11. N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
    [CrossRef] [PubMed]
  12. Y. Okada, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
    [CrossRef]
  13. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  14. J. J. A. Couture, “Polarization holographic characterization of organic azo dyes/PVA films for real time applications,” Appl. Opt. 30, 2858–2866 (1991).
    [CrossRef] [PubMed]

1993

Y. Okada, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

1992

1991

J. J. A. Couture, “Polarization holographic characterization of organic azo dyes/PVA films for real time applications,” Appl. Opt. 30, 2858–2866 (1991).
[CrossRef] [PubMed]

C. Soutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

1990

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
[CrossRef] [PubMed]

O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, “Saturable absorption, wave mixing, and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117–1119 (1990).
[CrossRef] [PubMed]

1988

1987

1984

1971

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature 233, 149–152 (1971).

Anderson, D. Z.

Bräuchle, C.

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
[CrossRef] [PubMed]

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
[CrossRef] [PubMed]

Briernacki, A. M.

Cartwright, C. M.

C. Soutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Couture, J. J. A.

Cronin-Golomb, M.

Cudney, R. S.

R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

Fainman, Y.

Feinberg, J.

R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
[CrossRef] [PubMed]

Fischer, B.

Ford, J. E.

Gillespire, W. A.

C. Soutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Hampp, N.

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
[CrossRef] [PubMed]

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
[CrossRef] [PubMed]

Hesselink, L.

Kong, H.

Kwong, N. S.-K.

Lee, S. H.

Lewis, A.

Lin, C.

Lininger, D. M.

Nebenzahl, I.

Nikolova, L.

Oesterhelt, D.

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
[CrossRef] [PubMed]

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
[CrossRef] [PubMed]

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature 233, 149–152 (1971).

Okada, Y.

Y. Okada, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

Otomo, J.

Y. Okada, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

Pierce, R. M.

R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

Sasabe, H.

Y. Okada, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

Soutar, C.

C. Soutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Stoeckenius, W.

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature 233, 149–152 (1971).

Tamita, Y.

Thoma, R.

Todorov, T.

Tomova, N.

Vachss, F.

Wang, Z. Q.

C. Soutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Werner, O.

Yamaguchi, I.

Y. Okada, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

Yariv, A.

Appl. Opt.

Biophys. J.

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y. Okada, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

Nature

R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature 233, 149–152 (1971).

Opt. Commun.

C. Soutar, C. M. Cartwright, W. A. Gillespire, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram illustrating the principle of the proposed novelty filter.

Fig. 2
Fig. 2

Experimental BR novelty-filter arrangement: BE1, BE2, beam expanders; P1, polarizer; P2, analyzer; PBS, polarizing beam splitter; L1, L2, lenses; IF, interference filter.

Fig. 3
Fig. 3

Temporal response of the novelty filter.

Fig. 4
Fig. 4

Normalized temporal response of the novelty filter with several intensities of signal beam.

Fig. 5
Fig. 5

(a) Input pattern of a part of a U.S. Air Force chart and (b) output image when the input pattern is moved.

Fig. 6
Fig. 6

Peak intensity of the output from the second input pulse as a function of the separation of the double pulses.

Metrics