Abstract

We report on the design, fabrication, and testing of multilevel computer-generated reflection holograms in Si for CO2 laser material processing for laser intensities of <2 kW/cm2. The holograms are designed with an iterative method based on scalar diffraction theory. In this case the reconstructed intensity distribution is independent of the incident high-power laser mode. For achieving high diffraction efficiencies, multilevel staircase surface topologies are fabricated by multimask and reactive ion-etching technology on the front side of a polished Si wafer. For efficient hologram cooling, a gratinglike structure of microchannels is chemically etched on the back side of the Si wafer. Absorption and deformation measurements have been carried out on both a microcooled flat mirror and a reflection hologram. The maximum deformation amounts to 200 nm and is 10 times smaller than comparable conventional uncoated Cu mirrors. A diffraction efficiency of 88% is achieved with an eight-level reflection hologram and a 30-mm-diameter CO2 laser beam with a power of 5 kW.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Hembd-Sollner, C. Budzinski, H. J. Tiziani, “Binary gratings for CO2 laser beam diagnostics,” Appl. Opt. 35, 3662–3670 (1996).
    [CrossRef]
  2. N. Chateau, D. Phalippou, P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform forms,” Opt. Commun. 88, 33–36 (1992).
    [CrossRef]
  3. Q. Tang, E. Jäger, T. Tschudi, “Fabrication of binary phase-only filters,” Optik 85, 5–10 (1990).
  4. A. Vasara, M. R. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, S. Kuisma, “Binary surface-relief gratings for array illumination in digital optics,” Appl. Opt. 31, 3320–3336 (1992).
    [CrossRef] [PubMed]
  5. O. Bryngdahl, “Computer-generated holograms as generalized optical components,” Opt. Eng. 14, 426–435 (1975).
    [CrossRef]
  6. H. Hügel, Strahlwerkzeug Laser (Teubner Studienbücher, Stuttgart, Germany, 1992), pp. 196–200.
  7. M. A. Golub, I. N. Sisakyan, V. A. Soifer, “Infra-red radiation focussators,” Opt. Laser Eng. 15, 297–309 (1991).
    [CrossRef]
  8. A. Engel, J. Steffen, G. Herziger, “Laser machining with modulated zone plates,” Appl. Opt. 13, 269–273 (1974).
    [CrossRef] [PubMed]
  9. E. Hasman, N. Davidson, A. A. Friesem, “Efficient multilevel phase holograms for CO2 lasers,” Opt. Lett. 16, 423–425 (1991).
    [CrossRef] [PubMed]
  10. E. Hasman, N. Davidson, A. A. Friesem, “Heterostructure multilevel binary optics,” Opt. Lett. 16, 1460–1462 (1991).
    [CrossRef] [PubMed]
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp.752–754.
  12. F. Wyrowski, O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 28, 1–86 (1991).
  13. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  14. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
    [CrossRef]
  15. C. Haupt, A. Kolodziejczyk, H. J. Tiziani, “Resolution and intensity distribution of output images reconstructed by sampled computer-generated holograms,” Appl. Opt. 34, 3077–3086 (1995).
    [CrossRef] [PubMed]
  16. D. Burger, “Optimierung der Strahlqualität beim Laserhärten,” in Optoelectronics in Engineering (Springer-Verlag, Berlin, 1989), pp. 472–486.
  17. C. Frere, D. Leseberg, “Large objects reconstructed from computer generated holograms,” Appl. Opt. 28, 33–42 (1989).
    [CrossRef]
  18. G. L. Herrit, H. E. Reedy, “Advanced figure of merit evaluation for CO2 laser optics using finite element analysis,” in Mirrors and Windows for High Power/High Energy Laser Systems, C. A. Klein, ed., Proc. SPIE1047, 33–42 (1989).
    [CrossRef]
  19. H. J. Tiziani, H. M. Uhde, “Three-dimensional image sensing by chromatic confocal arrangement,” Appl. Opt. 33, 1838–1843 (1994).
    [CrossRef] [PubMed]
  20. H. J. Tiziani, H. J. Jordan, “Optical non contact techniques for surface metrology,” (Commission of European Communities, Brussels, 1995).
  21. D. B. Tuckerman, R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett. 2, 126–129, (1989).
    [CrossRef]
  22. B. Acklin, J. Jahns, “Packing considerations for planar optical interconnection system,” Appl. Opt. 33, 1391–1397 (1994).
    [CrossRef] [PubMed]
  23. A. Giesen, R. W. Serchinger, “Absorptionsmessungen an optischen Komponenten und zwei Stahllegierungen,” in Proceedings of the Ninth International Congress, LASER 1989 (Springer-Verlag, Berlin1989), pp. 466–471.
  24. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 689–690.

1996 (1)

1995 (1)

1994 (2)

1992 (2)

1991 (4)

E. Hasman, N. Davidson, A. A. Friesem, “Efficient multilevel phase holograms for CO2 lasers,” Opt. Lett. 16, 423–425 (1991).
[CrossRef] [PubMed]

E. Hasman, N. Davidson, A. A. Friesem, “Heterostructure multilevel binary optics,” Opt. Lett. 16, 1460–1462 (1991).
[CrossRef] [PubMed]

F. Wyrowski, O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 28, 1–86 (1991).

M. A. Golub, I. N. Sisakyan, V. A. Soifer, “Infra-red radiation focussators,” Opt. Laser Eng. 15, 297–309 (1991).
[CrossRef]

1990 (1)

Q. Tang, E. Jäger, T. Tschudi, “Fabrication of binary phase-only filters,” Optik 85, 5–10 (1990).

1989 (2)

C. Frere, D. Leseberg, “Large objects reconstructed from computer generated holograms,” Appl. Opt. 28, 33–42 (1989).
[CrossRef]

D. B. Tuckerman, R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett. 2, 126–129, (1989).
[CrossRef]

1980 (1)

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
[CrossRef]

1975 (1)

O. Bryngdahl, “Computer-generated holograms as generalized optical components,” Opt. Eng. 14, 426–435 (1975).
[CrossRef]

1974 (1)

1972 (1)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Acklin, B.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp.752–754.

Bryngdahl, O.

F. Wyrowski, O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 28, 1–86 (1991).

O. Bryngdahl, “Computer-generated holograms as generalized optical components,” Opt. Eng. 14, 426–435 (1975).
[CrossRef]

Budzinski, C.

Burger, D.

D. Burger, “Optimierung der Strahlqualität beim Laserhärten,” in Optoelectronics in Engineering (Springer-Verlag, Berlin, 1989), pp. 472–486.

Chateau, N.

N. Chateau, D. Phalippou, P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform forms,” Opt. Commun. 88, 33–36 (1992).
[CrossRef]

Chavel, P.

N. Chateau, D. Phalippou, P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform forms,” Opt. Commun. 88, 33–36 (1992).
[CrossRef]

Davidson, N.

Engel, A.

Fienup, J. R.

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
[CrossRef]

Frere, C.

Friesem, A. A.

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Giesen, A.

A. Giesen, R. W. Serchinger, “Absorptionsmessungen an optischen Komponenten und zwei Stahllegierungen,” in Proceedings of the Ninth International Congress, LASER 1989 (Springer-Verlag, Berlin1989), pp. 466–471.

Golub, M. A.

M. A. Golub, I. N. Sisakyan, V. A. Soifer, “Infra-red radiation focussators,” Opt. Laser Eng. 15, 297–309 (1991).
[CrossRef]

Hasman, E.

Haupt, C.

Hembd-Sollner, C.

Herrit, G. L.

G. L. Herrit, H. E. Reedy, “Advanced figure of merit evaluation for CO2 laser optics using finite element analysis,” in Mirrors and Windows for High Power/High Energy Laser Systems, C. A. Klein, ed., Proc. SPIE1047, 33–42 (1989).
[CrossRef]

Herziger, G.

Hügel, H.

H. Hügel, Strahlwerkzeug Laser (Teubner Studienbücher, Stuttgart, Germany, 1992), pp. 196–200.

Ichikawa, H.

Jaakkola, T.

Jäger, E.

Q. Tang, E. Jäger, T. Tschudi, “Fabrication of binary phase-only filters,” Optik 85, 5–10 (1990).

Jahns, J.

Jordan, H. J.

H. J. Tiziani, H. J. Jordan, “Optical non contact techniques for surface metrology,” (Commission of European Communities, Brussels, 1995).

Kolodziejczyk, A.

Kuisma, S.

Leseberg, D.

Miller, J. M.

Noponen, E.

Pease, R. F. W.

D. B. Tuckerman, R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett. 2, 126–129, (1989).
[CrossRef]

Phalippou, D.

N. Chateau, D. Phalippou, P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform forms,” Opt. Commun. 88, 33–36 (1992).
[CrossRef]

Reedy, H. E.

G. L. Herrit, H. E. Reedy, “Advanced figure of merit evaluation for CO2 laser optics using finite element analysis,” in Mirrors and Windows for High Power/High Energy Laser Systems, C. A. Klein, ed., Proc. SPIE1047, 33–42 (1989).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Serchinger, R. W.

A. Giesen, R. W. Serchinger, “Absorptionsmessungen an optischen Komponenten und zwei Stahllegierungen,” in Proceedings of the Ninth International Congress, LASER 1989 (Springer-Verlag, Berlin1989), pp. 466–471.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 689–690.

Sisakyan, I. N.

M. A. Golub, I. N. Sisakyan, V. A. Soifer, “Infra-red radiation focussators,” Opt. Laser Eng. 15, 297–309 (1991).
[CrossRef]

Soifer, V. A.

M. A. Golub, I. N. Sisakyan, V. A. Soifer, “Infra-red radiation focussators,” Opt. Laser Eng. 15, 297–309 (1991).
[CrossRef]

Steffen, J.

Taghizadeh, M. R.

Tang, Q.

Q. Tang, E. Jäger, T. Tschudi, “Fabrication of binary phase-only filters,” Optik 85, 5–10 (1990).

Tiziani, H. J.

Tschudi, T.

Q. Tang, E. Jäger, T. Tschudi, “Fabrication of binary phase-only filters,” Optik 85, 5–10 (1990).

Tuckerman, D. B.

D. B. Tuckerman, R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett. 2, 126–129, (1989).
[CrossRef]

Turunen, J.

Uhde, H. M.

Vasara, A.

Westerholm, J.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp.752–754.

Wyrowski, F.

F. Wyrowski, O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 28, 1–86 (1991).

Appl. Opt. (7)

IEEE Electron Device Lett. (1)

D. B. Tuckerman, R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett. 2, 126–129, (1989).
[CrossRef]

Opt. Commun. (1)

N. Chateau, D. Phalippou, P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform forms,” Opt. Commun. 88, 33–36 (1992).
[CrossRef]

Opt. Eng. (2)

O. Bryngdahl, “Computer-generated holograms as generalized optical components,” Opt. Eng. 14, 426–435 (1975).
[CrossRef]

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
[CrossRef]

Opt. Laser Eng. (1)

M. A. Golub, I. N. Sisakyan, V. A. Soifer, “Infra-red radiation focussators,” Opt. Laser Eng. 15, 297–309 (1991).
[CrossRef]

Opt. Lett. (2)

Optik (2)

Q. Tang, E. Jäger, T. Tschudi, “Fabrication of binary phase-only filters,” Optik 85, 5–10 (1990).

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Rep. Prog. Phys. (1)

F. Wyrowski, O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 28, 1–86 (1991).

Other (7)

G. L. Herrit, H. E. Reedy, “Advanced figure of merit evaluation for CO2 laser optics using finite element analysis,” in Mirrors and Windows for High Power/High Energy Laser Systems, C. A. Klein, ed., Proc. SPIE1047, 33–42 (1989).
[CrossRef]

D. Burger, “Optimierung der Strahlqualität beim Laserhärten,” in Optoelectronics in Engineering (Springer-Verlag, Berlin, 1989), pp. 472–486.

H. Hügel, Strahlwerkzeug Laser (Teubner Studienbücher, Stuttgart, Germany, 1992), pp. 196–200.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp.752–754.

A. Giesen, R. W. Serchinger, “Absorptionsmessungen an optischen Komponenten und zwei Stahllegierungen,” in Proceedings of the Ninth International Congress, LASER 1989 (Springer-Verlag, Berlin1989), pp. 466–471.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 689–690.

H. J. Tiziani, H. J. Jordan, “Optical non contact techniques for surface metrology,” (Commission of European Communities, Brussels, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Arrangement for the inclined hologram that is designed for material processing.

Fig. 2
Fig. 2

Optimized intensity distribution for hardening a workpiece.

Fig. 3
Fig. 3

Calculated continuous-phase function of the hologram without inclination.

Fig. 4
Fig. 4

Part of the fabricated binary masks for inclined hologram phase functions.

Fig. 5
Fig. 5

Simulated reconstruction of an eight-level hologram. The intensity distribution is calculated for a hardening metallic workpiece.

Fig. 6
Fig. 6

Scheme of the fabrication of multilevel reflection holograms with binary masks.

Fig. 7
Fig. 7

(a) Microcooled CGH, (b) H2O supply inside the Pyrex.

Fig. 8
Fig. 8

Reflection hologram in Si with eight levels and a microcooler.

Fig. 9
Fig. 9

Temperature behavior of the hologram surface for 0.5-, 1-, and 1.5-kW laser illuminating power (irradiation time 30 s).

Fig. 10
Fig. 10

(a) Original mode of the 5-kW CO2 laser; (b), (d) reconstruction of the intensity distribution for tempering; (c) simulation of the reconstruction.

Fig. 11
Fig. 11

Burns in Plexiglas of the reconstructed intensity distribution for different times: (a) focused, (b) 10-mm defocused. The time between photographs was ∼1 s.

Fig. 12
Fig. 12

Temperature distribution on the workpiece during material processing: (a) 3 m/min, (b) 0.9 m/min.

Fig. 13
Fig. 13

Hardening traces in steel C45 with the hologram. The greatest depth of the hardening trace is 0.6 mm.

Tables (1)

Tables Icon

Table 1 Absorption Values of the Hologram and the Unstructured Surface

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

FSu=CfucombudtuaucombuDhu,
fuλz=FTOx,
hu=rectuLILaseru,
Ux=FTFSu=FTCfucombudtuaucombuDhu.
Ux=FfxcombfxdTfxAfxcombfxDHfx,
uλz=fu=uλr0,  vλz=fv=vcosθλr0,
r0=z2+u2+v2+2vz sinθ1/2,
d=N-1N λ2cosθ,

Metrics