Abstract

We report on the design, fabrication, and testing of multilevel computer-generated reflection holograms in Si for CO2 laser material processing for laser intensities of <2 kW/cm2. The holograms are designed with an iterative method based on scalar diffraction theory. In this case the reconstructed intensity distribution is independent of the incident high-power laser mode. For achieving high diffraction efficiencies, multilevel staircase surface topologies are fabricated by multimask and reactive ion-etching technology on the front side of a polished Si wafer. For efficient hologram cooling, a gratinglike structure of microchannels is chemically etched on the back side of the Si wafer. Absorption and deformation measurements have been carried out on both a microcooled flat mirror and a reflection hologram. The maximum deformation amounts to 200 nm and is 10 times smaller than comparable conventional uncoated Cu mirrors. A diffraction efficiency of 88% is achieved with an eight-level reflection hologram and a 30-mm-diameter CO2 laser beam with a power of 5 kW.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription