Abstract

Design considerations for a coaxial lidar receiver are examined, including details of coupling to an optical fiber for transfer of return light to a remote detector box. Attention is concentrated on the influence of fiber position on return-light capture efficiency and dynamic range of the return signal. The effect of a central obstruction on short-range signals is included. The analysis is augmented with simulations of lidar receiver performance.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Philbrick, D. B. Lysak, T. D. Stevens, P. A. T. Haris, Y. C. Rau, “Atmospheric measurements using the LAMP lidar during the LADIMAS campaign,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 651–654.
  2. P. Keckhut, A. Hauchecorne, M. L. Chanin, “Critical review of the data base acquired for the long-term surveillance of the middle atmosphere by the French lidars,” J. Atmos. Oceanic. Technol. 10, 850–861 (1993).
    [CrossRef]
  3. R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1992), p. 260.
  4. J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
    [CrossRef] [PubMed]
  5. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
    [CrossRef] [PubMed]
  6. H. Rutten, M. Venrooij, Telescope Optics (Willman-Bell, Richmond, Va., 1988), p. 153.
  7. G. Hass, J. R. Jenness, “Method for fabricating paraboloidal mirrors,” J. Opt. Soc. Am. A. 48, 86–87 (1958).
    [CrossRef]
  8. J. H. Saxton, D. E. Kline, “Optical characteristics and physical properties of filled-epoxy mirrors,” J. Opt. Soc. Am. A. 50, 1103–1111 (1960).
    [CrossRef]
  9. R. W. Wood, “The mercury paraboloid as a reflecting telescope,” Astrophys. J. 29, 164–176 (1909).
    [CrossRef]
  10. R. J. Sica, S. Sargoytchev, S. Flatt, E. Borra, L. Girard, “Lidar measurements using large liquid mirror telescopes,” in Sixteenth International Laser Radar Conference, NASA Conf. Pub. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 655–658.

1993 (1)

P. Keckhut, A. Hauchecorne, M. L. Chanin, “Critical review of the data base acquired for the long-term surveillance of the middle atmosphere by the French lidars,” J. Atmos. Oceanic. Technol. 10, 850–861 (1993).
[CrossRef]

1979 (1)

1978 (1)

1960 (1)

J. H. Saxton, D. E. Kline, “Optical characteristics and physical properties of filled-epoxy mirrors,” J. Opt. Soc. Am. A. 50, 1103–1111 (1960).
[CrossRef]

1958 (1)

G. Hass, J. R. Jenness, “Method for fabricating paraboloidal mirrors,” J. Opt. Soc. Am. A. 48, 86–87 (1958).
[CrossRef]

1909 (1)

R. W. Wood, “The mercury paraboloid as a reflecting telescope,” Astrophys. J. 29, 164–176 (1909).
[CrossRef]

Borra, E.

R. J. Sica, S. Sargoytchev, S. Flatt, E. Borra, L. Girard, “Lidar measurements using large liquid mirror telescopes,” in Sixteenth International Laser Radar Conference, NASA Conf. Pub. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 655–658.

Chanin, M. L.

P. Keckhut, A. Hauchecorne, M. L. Chanin, “Critical review of the data base acquired for the long-term surveillance of the middle atmosphere by the French lidars,” J. Atmos. Oceanic. Technol. 10, 850–861 (1993).
[CrossRef]

Flatt, S.

R. J. Sica, S. Sargoytchev, S. Flatt, E. Borra, L. Girard, “Lidar measurements using large liquid mirror telescopes,” in Sixteenth International Laser Radar Conference, NASA Conf. Pub. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 655–658.

Girard, L.

R. J. Sica, S. Sargoytchev, S. Flatt, E. Borra, L. Girard, “Lidar measurements using large liquid mirror telescopes,” in Sixteenth International Laser Radar Conference, NASA Conf. Pub. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 655–658.

Haris, P. A. T.

C. R. Philbrick, D. B. Lysak, T. D. Stevens, P. A. T. Haris, Y. C. Rau, “Atmospheric measurements using the LAMP lidar during the LADIMAS campaign,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 651–654.

Harms, J.

Hass, G.

G. Hass, J. R. Jenness, “Method for fabricating paraboloidal mirrors,” J. Opt. Soc. Am. A. 48, 86–87 (1958).
[CrossRef]

Hauchecorne, A.

P. Keckhut, A. Hauchecorne, M. L. Chanin, “Critical review of the data base acquired for the long-term surveillance of the middle atmosphere by the French lidars,” J. Atmos. Oceanic. Technol. 10, 850–861 (1993).
[CrossRef]

Jenness, J. R.

G. Hass, J. R. Jenness, “Method for fabricating paraboloidal mirrors,” J. Opt. Soc. Am. A. 48, 86–87 (1958).
[CrossRef]

Keckhut, P.

P. Keckhut, A. Hauchecorne, M. L. Chanin, “Critical review of the data base acquired for the long-term surveillance of the middle atmosphere by the French lidars,” J. Atmos. Oceanic. Technol. 10, 850–861 (1993).
[CrossRef]

Kline, D. E.

J. H. Saxton, D. E. Kline, “Optical characteristics and physical properties of filled-epoxy mirrors,” J. Opt. Soc. Am. A. 50, 1103–1111 (1960).
[CrossRef]

Lahmann, W.

Lysak, D. B.

C. R. Philbrick, D. B. Lysak, T. D. Stevens, P. A. T. Haris, Y. C. Rau, “Atmospheric measurements using the LAMP lidar during the LADIMAS campaign,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 651–654.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1992), p. 260.

Philbrick, C. R.

C. R. Philbrick, D. B. Lysak, T. D. Stevens, P. A. T. Haris, Y. C. Rau, “Atmospheric measurements using the LAMP lidar during the LADIMAS campaign,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 651–654.

Rau, Y. C.

C. R. Philbrick, D. B. Lysak, T. D. Stevens, P. A. T. Haris, Y. C. Rau, “Atmospheric measurements using the LAMP lidar during the LADIMAS campaign,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 651–654.

Rutten, H.

H. Rutten, M. Venrooij, Telescope Optics (Willman-Bell, Richmond, Va., 1988), p. 153.

Sargoytchev, S.

R. J. Sica, S. Sargoytchev, S. Flatt, E. Borra, L. Girard, “Lidar measurements using large liquid mirror telescopes,” in Sixteenth International Laser Radar Conference, NASA Conf. Pub. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 655–658.

Saxton, J. H.

J. H. Saxton, D. E. Kline, “Optical characteristics and physical properties of filled-epoxy mirrors,” J. Opt. Soc. Am. A. 50, 1103–1111 (1960).
[CrossRef]

Sica, R. J.

R. J. Sica, S. Sargoytchev, S. Flatt, E. Borra, L. Girard, “Lidar measurements using large liquid mirror telescopes,” in Sixteenth International Laser Radar Conference, NASA Conf. Pub. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 655–658.

Stevens, T. D.

C. R. Philbrick, D. B. Lysak, T. D. Stevens, P. A. T. Haris, Y. C. Rau, “Atmospheric measurements using the LAMP lidar during the LADIMAS campaign,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 651–654.

Venrooij, M.

H. Rutten, M. Venrooij, Telescope Optics (Willman-Bell, Richmond, Va., 1988), p. 153.

Weitkamp, C.

Wood, R. W.

R. W. Wood, “The mercury paraboloid as a reflecting telescope,” Astrophys. J. 29, 164–176 (1909).
[CrossRef]

Appl. Opt. (2)

Astrophys. J. (1)

R. W. Wood, “The mercury paraboloid as a reflecting telescope,” Astrophys. J. 29, 164–176 (1909).
[CrossRef]

J. Atmos. Oceanic. Technol. (1)

P. Keckhut, A. Hauchecorne, M. L. Chanin, “Critical review of the data base acquired for the long-term surveillance of the middle atmosphere by the French lidars,” J. Atmos. Oceanic. Technol. 10, 850–861 (1993).
[CrossRef]

J. Opt. Soc. Am. A. (2)

G. Hass, J. R. Jenness, “Method for fabricating paraboloidal mirrors,” J. Opt. Soc. Am. A. 48, 86–87 (1958).
[CrossRef]

J. H. Saxton, D. E. Kline, “Optical characteristics and physical properties of filled-epoxy mirrors,” J. Opt. Soc. Am. A. 50, 1103–1111 (1960).
[CrossRef]

Other (4)

R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1992), p. 260.

H. Rutten, M. Venrooij, Telescope Optics (Willman-Bell, Richmond, Va., 1988), p. 153.

R. J. Sica, S. Sargoytchev, S. Flatt, E. Borra, L. Girard, “Lidar measurements using large liquid mirror telescopes,” in Sixteenth International Laser Radar Conference, NASA Conf. Pub. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 655–658.

C. R. Philbrick, D. B. Lysak, T. D. Stevens, P. A. T. Haris, Y. C. Rau, “Atmospheric measurements using the LAMP lidar during the LADIMAS campaign,” in Sixteenth International Laser Radar Conference, NASA Conf. Publ. 3158, Part 2. (NASA, Hampton, Va., 1992), pp. 651–654.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Lidar optics.

Fig. 2
Fig. 2

Capture of images by optical fiber.

Fig. 3
Fig. 3

Peripheral rays converging to edges of near-field and far-field images.

Fig. 4
Fig. 4

Equivalent lens.

Fig. 5
Fig. 5

Lens system equivalent to lidar receiver with central obstruction.

Fig. 6
Fig. 6

Capture efficiency and signal strength for a 1-mm fiber at the maximum-capture position of a mirror of 40-cm diameter and 100-cm focal length.

Fig. 7
Fig. 7

Signal strength for a 1-mm fiber at the maximum-capture position and the infinity focus of a mirror of 40-cm diameter and 100-cm focal length.

Fig. 8
Fig. 8

Capture efficiencies for 0.5-, 1.0-, and 2.0-mm fibers at the infinity focus of a mirror of 40-cm diameter and 100-cm focal length.

Fig. 9
Fig. 9

Signal strength for 0.5-, 1.0-, and 2.0-mm fibers at the infinity focus of a mirror of 40-cm diameter and 100-cm focal length.

Tables (1)

Tables Icon

Table 1 Critical Altitudes for Light Capture by an Optical Fiber of 1-mm Diameter as Functions of Collecting Mirror Diametera

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

tan Ψ=D/2f,
Dz=Dt+θz.
Φ=Dz/z.
Φ=di/v.
di=vDz/z.
1/v+1/z=1/f,
v=zf/z-f
v-f=f2/z-f.
v=f.
di=(Dt+zθ) f/z-f.
di=fθ+Dt/z
di=fθ.
dm=df-2s tan Ψ=df-sD/f.
dm=fθ+Dt/zm.
s=vm-f=f2/zm.
zm=fD+Dt/df-fθ.
db=fθ+2q tan Ψ=di+2p tan Ψ,
p+q=v-f.
p+q=f2/zt-f,
p+q=f2/zt,
p=f2/zt-q.
q=1+Dt/Df2/2zt,
p=1-Dt/Df2/2zt.
db=fθ+D+Dtf/2zt.
fD+Dt=2ztdf-fθ.
fD=2ztdf.
An=sin Ψ
f/D=0.51/An2-11/2.
zt=D+Dt/2df/f-θ.
zt=D+Dt/2df/6D-θ.
db=v-wD/v.
db=zf-w+wfD/zf.
db=fD/z.
df/db2=df2z2/fD2.
vo=zof/zo-f.
vo/Do=vo-f+q/df.
zo=f/1-f1-df/Do/f+q.
zo=fDo/df.

Metrics