Abstract

The extinction spectrum from single and aggregated hemispheres whose flat faces lie on a reflecting surface is calculated, and some of the expected resonances are found to disappear for specific choices of the direction and the polarization of the incident wave. This resonance-suppressing effect is fully explained for the case of single hemispheres, whereas for the case of aggregated hemispheres the guidelines for its explanation are given.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Chap. 4, pp. 28–31; Chap. 9, p. 119.
  2. M. Kerker, The Scattering of Light (Academic, New York, 1969), Chap. 5, pp. 232–238.
  3. P. Chýlek, “Partial wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).
    [CrossRef]
  4. A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
    [CrossRef]
  5. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristic,” Appl. Opt. 17, 3019–3021 (1978).
    [CrossRef]
  6. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
    [CrossRef] [PubMed]
  8. J. R. Probert-Jones, “Resonance component of backscattering by large dielectric spheres,” J. Opt. Soc. Am. A 1, 822–830 (1984).
    [CrossRef]
  9. P. R. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “Efficient automated algorithm for the sizing of dielectric microspheres using the resonance spectrum,” J. Opt. Soc. Am. A 1, 1181–1187 (1984).
    [CrossRef]
  10. J. D. Eversole, H.-B. Lin, A. L. Huston, A. J. Campillo, P. T. Leung, K. Young, “High-precision identification of morphology-dependent resonances in optical processes in microdroplets,” J. Opt. Soc. Am. B 10, 1955–1968 (1993).
    [CrossRef]
  11. S. C. Hill, C. K. Rushforth, R. E. Benner, P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computed resonance locations: algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985).
    [CrossRef] [PubMed]
  12. D. Q. Chowdhury, S. C. Hill, P. W. Barber, “Morphology-dependent resonances in radially inhomogeneous spheres,” J. Opt. Soc. Am. A 8, 1702–1705 (1991).
    [CrossRef]
  13. R. L. Hightower, C. B. Richardson, “Resonant Mie scattering from layered spheres,” Appl. Opt. 27, 4850–4855 (1988).
    [CrossRef] [PubMed]
  14. R. Ruppin, “Optical absorption of a coated sphere above a substrate,” Physica A 178, 195–205 (1991).
    [CrossRef]
  15. R. Ruppin, “Electric field enhancement near a surface bump,” Solid State Commun. 39, 903–906 (1981).
    [CrossRef]
  16. R. Ruppin, “Surface modes and optical absorption of a small sphere above a substrate,” Surf. Sci. 127, 108–118 (1983).
    [CrossRef]
  17. D. W. Berreman, “Anomalous reststrahl structure from slight surface roughness,” Phys. Rev. 163, 855–864 (1967).
    [CrossRef]
  18. J. Li, P. Chýlek, “Resonances of a dielectric sphere illuminated by two counterpropagating plane waves,” J. Opt. Soc. Am. A 10, 687–692 (1993).
    [CrossRef]
  19. G. Videen, P. Chýlek, “Light scattering resonance enhancement and suppression in cylinders and spheres using two coherent plane waves,” Opt. Commun. 98, 313–322 (1993).
    [CrossRef]
  20. B. R. Johnson, “Light scattering from a spherical particle on a conducting plane: I. Normal incidence,” J. Opt. Soc. Am. A 9, 1341–1351 (1992); “Errata,” J. Opt. Soc. Am. A 10, 776 (1993).
    [CrossRef]
  21. B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conducting plane,” J. Opt. Soc. Am. A 11, 2055–2064 (1994).
    [CrossRef]
  22. F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
    [CrossRef]
  23. F. Borghese, P. Denti, R. Saija, O. I. Sindoni, “Reliability of the theoretical description of electromagnetic scattering from non-spherical particles,” J. Aerosol Sci. 20, 1079–1081 (1989).
    [CrossRef]
  24. R. T. Wang, J. M. Greenberg, D. W. Schuerman, “Experimental results of the dependent light scattering by two spheres,” Opt. Lett. 11, 543–545 (1981).
    [CrossRef]
  25. F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Effects of the aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Nuovo Cim. D 6, 545–558 (1985).
    [CrossRef]
  26. K. A. Fuller, “Optical resonances and two-sphere systems,” Appl. Opt. 30, 4716–4731 (1991).
    [CrossRef] [PubMed]
  27. I. V. Lindell, E. Alanen, “Exact-image theory for the Sommerfeld half-space problem. Part III. General formulation,” IEEE Trans. Antennas Propag. AP-32, 1027–1032 (1984).
    [CrossRef]
  28. F. Borghese, P. Denti, R. Saija, E. Fucile, O. I. Sindoni, “Optical properties of model anisotropic particles on or near a perfectly reflecting surface,” J. Opt. Soc. Am. A 12, 530–540 (1995).
    [CrossRef]
  29. P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
    [CrossRef]
  30. T. C. Rao, R. Barakat, “Plane-wave scattering by a conducting cylinder partially embedded in a ground plane. 1. TM case,” J. Opt. Soc. Am. A 6, 1270–1280 (1989).
    [CrossRef]
  31. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991); “Erratum,” J. Opt. Soc. Am. A 9, 844–845 (1992).
    [CrossRef]
  32. B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by multipole expansion method,” J. Opt. Soc. Am. A 13, 326–337 (1996).
    [CrossRef]
  33. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Chap. 7, p. 281; Chap. 16, p. 746.
  34. E. M. Rose, Multipole Fields (Wiley, New York, 1956), Chap II, p. 25; Chap. VI, pp. 72–73.
  35. E. M. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957), Chap. VII, p. 136; App. I, p. 222; App. III, p. 235.
  36. P. C. Waterman, “Symmetry, unitarity and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
    [CrossRef]
  37. E. Fucile, F. Borghese, P. Denti, R. Saija, “Effect of an electrostatic field on the optical properties of a cloud of dielectric particles,” Appl. Opt. 34, 4552–4562 (1995).
    [CrossRef] [PubMed]
  38. L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).
  39. R. G. Newton, Scattering Theory of Waves and Particles (Springer-Verlag, New York, 1982), Chap. 1, p. 23; Chap. 3, p. 61.
  40. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343–352 (1993).
    [CrossRef]

1996 (1)

1995 (2)

1994 (1)

1993 (4)

1992 (1)

1991 (4)

1989 (2)

F. Borghese, P. Denti, R. Saija, O. I. Sindoni, “Reliability of the theoretical description of electromagnetic scattering from non-spherical particles,” J. Aerosol Sci. 20, 1079–1081 (1989).
[CrossRef]

T. C. Rao, R. Barakat, “Plane-wave scattering by a conducting cylinder partially embedded in a ground plane. 1. TM case,” J. Opt. Soc. Am. A 6, 1270–1280 (1989).
[CrossRef]

1988 (1)

1986 (1)

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
[CrossRef]

1985 (2)

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Effects of the aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Nuovo Cim. D 6, 545–558 (1985).
[CrossRef]

S. C. Hill, C. K. Rushforth, R. E. Benner, P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computed resonance locations: algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985).
[CrossRef] [PubMed]

1984 (4)

J. R. Probert-Jones, “Resonance component of backscattering by large dielectric spheres,” J. Opt. Soc. Am. A 1, 822–830 (1984).
[CrossRef]

P. R. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “Efficient automated algorithm for the sizing of dielectric microspheres using the resonance spectrum,” J. Opt. Soc. Am. A 1, 1181–1187 (1984).
[CrossRef]

I. V. Lindell, E. Alanen, “Exact-image theory for the Sommerfeld half-space problem. Part III. General formulation,” IEEE Trans. Antennas Propag. AP-32, 1027–1032 (1984).
[CrossRef]

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
[CrossRef]

1983 (1)

R. Ruppin, “Surface modes and optical absorption of a small sphere above a substrate,” Surf. Sci. 127, 108–118 (1983).
[CrossRef]

1981 (3)

1978 (2)

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristic,” Appl. Opt. 17, 3019–3021 (1978).
[CrossRef]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

1977 (1)

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

1976 (1)

1971 (1)

P. C. Waterman, “Symmetry, unitarity and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[CrossRef]

1967 (1)

D. W. Berreman, “Anomalous reststrahl structure from slight surface roughness,” Phys. Rev. 163, 855–864 (1967).
[CrossRef]

Alanen, E.

I. V. Lindell, E. Alanen, “Exact-image theory for the Sommerfeld half-space problem. Part III. General formulation,” IEEE Trans. Antennas Propag. AP-32, 1027–1032 (1984).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Barakat, R.

Barber, P. W.

Benner, R. E.

Berreman, D. W.

D. W. Berreman, “Anomalous reststrahl structure from slight surface roughness,” Phys. Rev. 163, 855–864 (1967).
[CrossRef]

Bobbert, P. A.

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
[CrossRef]

Borghese, F.

F. Borghese, P. Denti, R. Saija, E. Fucile, O. I. Sindoni, “Optical properties of model anisotropic particles on or near a perfectly reflecting surface,” J. Opt. Soc. Am. A 12, 530–540 (1995).
[CrossRef]

E. Fucile, F. Borghese, P. Denti, R. Saija, “Effect of an electrostatic field on the optical properties of a cloud of dielectric particles,” Appl. Opt. 34, 4552–4562 (1995).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, O. I. Sindoni, “Reliability of the theoretical description of electromagnetic scattering from non-spherical particles,” J. Aerosol Sci. 20, 1079–1081 (1989).
[CrossRef]

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Effects of the aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Nuovo Cim. D 6, 545–558 (1985).
[CrossRef]

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
[CrossRef]

Campillo, A. J.

Chowdhury, D. Q.

Chýlek, P.

Conwell, P. R.

Denti, P.

E. Fucile, F. Borghese, P. Denti, R. Saija, “Effect of an electrostatic field on the optical properties of a cloud of dielectric particles,” Appl. Opt. 34, 4552–4562 (1995).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, E. Fucile, O. I. Sindoni, “Optical properties of model anisotropic particles on or near a perfectly reflecting surface,” J. Opt. Soc. Am. A 12, 530–540 (1995).
[CrossRef]

F. Borghese, P. Denti, R. Saija, O. I. Sindoni, “Reliability of the theoretical description of electromagnetic scattering from non-spherical particles,” J. Aerosol Sci. 20, 1079–1081 (1989).
[CrossRef]

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Effects of the aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Nuovo Cim. D 6, 545–558 (1985).
[CrossRef]

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Eversole, J. D.

Fucile, E.

Fuller, K. A.

Greenberg, J. M.

Hightower, R. L.

Hill, S. C.

Huston, A. L.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Chap. 7, p. 281; Chap. 16, p. 746.

Johnson, B. R.

Kerker, M.

M. Kerker, The Scattering of Light (Academic, New York, 1969), Chap. 5, pp. 232–238.

Kiehl, J. T.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristic,” Appl. Opt. 17, 3019–3021 (1978).
[CrossRef]

Ko, M. K. W.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristic,” Appl. Opt. 17, 3019–3021 (1978).
[CrossRef]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

Kong, J. A.

L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).

Leung, P. T.

Li, J.

Lin, H.-B.

Lindell, I. V.

I. V. Lindell, E. Alanen, “Exact-image theory for the Sommerfeld half-space problem. Part III. General formulation,” IEEE Trans. Antennas Propag. AP-32, 1027–1032 (1984).
[CrossRef]

Newton, R. G.

R. G. Newton, Scattering Theory of Waves and Particles (Springer-Verlag, New York, 1982), Chap. 1, p. 23; Chap. 3, p. 61.

Probert-Jones, J. R.

Rao, T. C.

Richardson, C. B.

Rose, E. M.

E. M. Rose, Multipole Fields (Wiley, New York, 1956), Chap II, p. 25; Chap. VI, pp. 72–73.

E. M. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957), Chap. VII, p. 136; App. I, p. 222; App. III, p. 235.

Ruppin, R.

R. Ruppin, “Optical absorption of a coated sphere above a substrate,” Physica A 178, 195–205 (1991).
[CrossRef]

R. Ruppin, “Surface modes and optical absorption of a small sphere above a substrate,” Surf. Sci. 127, 108–118 (1983).
[CrossRef]

R. Ruppin, “Electric field enhancement near a surface bump,” Solid State Commun. 39, 903–906 (1981).
[CrossRef]

Rushforth, C. K.

Saija, R.

E. Fucile, F. Borghese, P. Denti, R. Saija, “Effect of an electrostatic field on the optical properties of a cloud of dielectric particles,” Appl. Opt. 34, 4552–4562 (1995).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, E. Fucile, O. I. Sindoni, “Optical properties of model anisotropic particles on or near a perfectly reflecting surface,” J. Opt. Soc. Am. A 12, 530–540 (1995).
[CrossRef]

F. Borghese, P. Denti, R. Saija, O. I. Sindoni, “Reliability of the theoretical description of electromagnetic scattering from non-spherical particles,” J. Aerosol Sci. 20, 1079–1081 (1989).
[CrossRef]

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Effects of the aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Nuovo Cim. D 6, 545–558 (1985).
[CrossRef]

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
[CrossRef]

Schuerman, D. W.

Shin, R. T.

L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).

Sindoni, O. I.

F. Borghese, P. Denti, R. Saija, E. Fucile, O. I. Sindoni, “Optical properties of model anisotropic particles on or near a perfectly reflecting surface,” J. Opt. Soc. Am. A 12, 530–540 (1995).
[CrossRef]

F. Borghese, P. Denti, R. Saija, O. I. Sindoni, “Reliability of the theoretical description of electromagnetic scattering from non-spherical particles,” J. Aerosol Sci. 20, 1079–1081 (1989).
[CrossRef]

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Effects of the aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Nuovo Cim. D 6, 545–558 (1985).
[CrossRef]

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
[CrossRef]

Toscano, G.

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Effects of the aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Nuovo Cim. D 6, 545–558 (1985).
[CrossRef]

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
[CrossRef]

Tsang, L.

L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Chap. 4, pp. 28–31; Chap. 9, p. 119.

Videen, G.

G. Videen, P. Chýlek, “Light scattering resonance enhancement and suppression in cylinders and spheres using two coherent plane waves,” Opt. Commun. 98, 313–322 (1993).
[CrossRef]

G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991); “Erratum,” J. Opt. Soc. Am. A 9, 844–845 (1992).
[CrossRef]

Vlieger, J.

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
[CrossRef]

Wang, R. T.

Waterman, P. C.

P. C. Waterman, “Symmetry, unitarity and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[CrossRef]

Young, K.

Aerosol Sci. Technol. (1)

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
[CrossRef]

Appl. Opt. (6)

IEEE Trans. Antennas Propag. (1)

I. V. Lindell, E. Alanen, “Exact-image theory for the Sommerfeld half-space problem. Part III. General formulation,” IEEE Trans. Antennas Propag. AP-32, 1027–1032 (1984).
[CrossRef]

J. Aerosol Sci. (1)

F. Borghese, P. Denti, R. Saija, O. I. Sindoni, “Reliability of the theoretical description of electromagnetic scattering from non-spherical particles,” J. Aerosol Sci. 20, 1079–1081 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (11)

J. R. Probert-Jones, “Resonance component of backscattering by large dielectric spheres,” J. Opt. Soc. Am. A 1, 822–830 (1984).
[CrossRef]

P. R. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “Efficient automated algorithm for the sizing of dielectric microspheres using the resonance spectrum,” J. Opt. Soc. Am. A 1, 1181–1187 (1984).
[CrossRef]

D. Q. Chowdhury, S. C. Hill, P. W. Barber, “Morphology-dependent resonances in radially inhomogeneous spheres,” J. Opt. Soc. Am. A 8, 1702–1705 (1991).
[CrossRef]

J. Li, P. Chýlek, “Resonances of a dielectric sphere illuminated by two counterpropagating plane waves,” J. Opt. Soc. Am. A 10, 687–692 (1993).
[CrossRef]

B. R. Johnson, “Light scattering from a spherical particle on a conducting plane: I. Normal incidence,” J. Opt. Soc. Am. A 9, 1341–1351 (1992); “Errata,” J. Opt. Soc. Am. A 10, 776 (1993).
[CrossRef]

B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conducting plane,” J. Opt. Soc. Am. A 11, 2055–2064 (1994).
[CrossRef]

F. Borghese, P. Denti, R. Saija, E. Fucile, O. I. Sindoni, “Optical properties of model anisotropic particles on or near a perfectly reflecting surface,” J. Opt. Soc. Am. A 12, 530–540 (1995).
[CrossRef]

T. C. Rao, R. Barakat, “Plane-wave scattering by a conducting cylinder partially embedded in a ground plane. 1. TM case,” J. Opt. Soc. Am. A 6, 1270–1280 (1989).
[CrossRef]

G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991); “Erratum,” J. Opt. Soc. Am. A 9, 844–845 (1992).
[CrossRef]

B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by multipole expansion method,” J. Opt. Soc. Am. A 13, 326–337 (1996).
[CrossRef]

B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343–352 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nuovo Cim. D (1)

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Effects of the aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Nuovo Cim. D 6, 545–558 (1985).
[CrossRef]

Opt. Commun. (1)

G. Videen, P. Chýlek, “Light scattering resonance enhancement and suppression in cylinders and spheres using two coherent plane waves,” Opt. Commun. 98, 313–322 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

D. W. Berreman, “Anomalous reststrahl structure from slight surface roughness,” Phys. Rev. 163, 855–864 (1967).
[CrossRef]

Phys. Rev. A (1)

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

Phys. Rev. D (1)

P. C. Waterman, “Symmetry, unitarity and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[CrossRef]

Phys. Rev. Lett. (1)

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Physica A (2)

R. Ruppin, “Optical absorption of a coated sphere above a substrate,” Physica A 178, 195–205 (1991).
[CrossRef]

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
[CrossRef]

Solid State Commun. (1)

R. Ruppin, “Electric field enhancement near a surface bump,” Solid State Commun. 39, 903–906 (1981).
[CrossRef]

Surf. Sci. (1)

R. Ruppin, “Surface modes and optical absorption of a small sphere above a substrate,” Surf. Sci. 127, 108–118 (1983).
[CrossRef]

Other (7)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Chap. 4, pp. 28–31; Chap. 9, p. 119.

M. Kerker, The Scattering of Light (Academic, New York, 1969), Chap. 5, pp. 232–238.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Chap. 7, p. 281; Chap. 16, p. 746.

E. M. Rose, Multipole Fields (Wiley, New York, 1956), Chap II, p. 25; Chap. VI, pp. 72–73.

E. M. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957), Chap. VII, p. 136; App. I, p. 222; App. III, p. 235.

L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).

R. G. Newton, Scattering Theory of Waves and Particles (Springer-Verlag, New York, 1982), Chap. 1, p. 23; Chap. 3, p. 61.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Plot of the quantity Uηlp I) for l ≤ 4. In this paper we adopted the convention that p = 1,2 classifies the multipoles as magnetic or electric, respectively; in turn η = 1,2 indicates that the polarization is parallel or orthogonal, respectively, to the plane of incidence.

Fig. 2
Fig. 2

γRη (solid curves) for a homogeneous hemisphere of radius ρ and refractive index n 0 = 3 on a reflecting surface as a function of x = nkρ for η = 1. The medium that fills the accessible half-space is assumed to be the vacuum (n = 1). The angle of incidence is (a) θ I = 0°, (b) θ I = 45°, (c) θ I = 70°. For comparison we also report γ (dotted curves) for the equivalent sphere illuminated by the incident wave only. The resonances are labeled (p, l)n, where n distinguishes different resonances with the same value of p and l.

Fig. 3
Fig. 3

(a) γη for the aggregate of two identical mutually contacting spheres of radius ρ and refractive index n 0 = 31.4, (b) γ Rη for the binary aggregate of hemispheres with the same radius and refractive index on a reflecting surface as a function of x = nkρ. The medium that fills the accessible half-space is assumed to be the vacuum (n = 1). The axis of the aggregate lies in the xz plane and is parallel to the x axis. The plane of incidence coincides with the xz plane and the angle of incidence is θ I = 70°. The solid and the dotted curves refer to polarization parallel and orthogonal to the plane of incidence, respectively. We note that the spike at x = 0.09813 in (a) appears for both choices of polarization, although they are not discernible on the scale of the figure.

Fig. 4
Fig. 4

Same as Fig. 3 except that the angle of incidence here is θI = 0°.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

EI=E0eˆI expikI·r,
ER=E0eˆR expikR·r,
ûI1×ûI2=kˆI, ûR1×ûR2=kˆR.
EI=E0ηeˆI·ûIηûIη expikI·r,  ER=E0ηeˆR·ûRηûRη expikR·r,
F1=n2 cos θI-nn2-n2 sin2 θI1/2n2 cos θI+nn2-n2 sin2 θI1/2, F2=n cos θI-nn2-n2 sin2 θI1/2n cos θI+nn2-n2 sin2 θI1/2,
Fη=(-)η-1.
E0eˆR·ûRη=E0FηeˆI·ûIη,
ER=E0ηFηeˆI·ûIηûRη expik·r.
E=E0û expiK·r=E0plmWlmpû, KˆJlmpr, K,
Jlm1r, K=jlKrXlmˆr,Jlm2r, K=1K×jlKrXlmrˆ,
Wlm1û, Kˆ=4πilû·Xlm*Kˆ,Wlm2û, Kˆ=4πil+1Kˆ×û·Xlm*Kˆ.
EI=E0ηeˆI·ûIηplmWIηlmpJlmpr, nk,  ER=E0ηFηeˆI·ûIηplmWRηlmpJlmpr, nk,
WIηlmp=WlmpûIη, kˆI,  WRηlmp=WlmpûRη, kˆR.
WRηlmp=(-)η+p+l+mWIηlmp.
ER=E0ηFηeˆI·ûIηplm(-)η+p+l+mWIηlmpJlmpr, nk,
EE=EI+ER=E0ηeˆI·ûIη×plm1+(-)η+p+l+mFηWIηlmpJlmpr, nk.
ESη=plmAηlmpHlmpr, nk,
Aηlmp=-plmSlm,lmp,pWEηlmp,
WEηlmp=1-(-)p+l+mWIηlmp,
ESη=expinkrrE0fηkˆS, kˆI,
fη=1nklm-il+1Aηlm1XlmkˆS+iAηlm2kˆS×XlmkˆS.
ση=4πk ImfηηkˆS=kˆI, kˆI,
fηηkˆI, kˆI=i4πnkplmplmWIηlmp*Slm,lmp,pWIηlmp.
EIη=E0ûIη expikI·r,
ERη=E0(-)η-1ûRη expikR·r.
EDη=E0(-)η-1ûRη expikR·r+expinkrrfηkˆR, kˆI,
σRη=4πk Im(-)η-1fRη,ηkˆR,kˆI,
fRηηkˆR, kˆI=i4πnkplmplmWRηlmp*Slm,lmp,pWEηlmp,
Slm,lmp,p=δppδllδmmRlp,
Rlp=1+n¯δp1uln0kρulnkρ-1+n¯δp2uln0kρulnkρ1+n¯δp1uln0kρwlnkρ-1+n¯δp2uln0kρwlnkρ,
n¯=n0n-1, ulx=xjlx, wlx=xhl1x.
fηηkˆI, kˆI=i4πnkplmWIηlmp*RlpWIηlmp, fRηηkˆR, kˆI=i4πnkplmWRηlmp*RlpWEηlmp,
mWIηlmp*WIηlmp=2π2l+1,
Uηlp=mWRηlmp*WEηlmp
Uηlp=(-)η-12π2l+1+m(-)η+p+l+mWIηlmp*WIηlmp.
γRn=2k Im(-)η-1fRηηkˆR, kˆI
γ=2k ImfηηkˆI, kˆI
γη=2k ImfηηkˆI, kˆI,

Metrics